login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A327980
Distances between successive zeros in A051023, the middle column of rule-30 1-D cellular automaton, when started from a lone 1 cell.
6
4, 1, 3, 1, 1, 2, 3, 1, 2, 1, 4, 2, 4, 1, 4, 2, 2, 3, 1, 1, 1, 3, 1, 2, 2, 3, 2, 2, 7, 1, 1, 1, 5, 1, 1, 2, 2, 4, 1, 1, 1, 1, 2, 1, 2, 3, 1, 1, 4, 1, 1, 3, 3, 3, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 6, 4, 2, 1, 4, 1, 1, 4, 2, 4, 1, 1, 1, 1, 3, 1, 2, 1, 1, 3, 1, 5, 1, 7, 1, 1, 1, 1, 1, 8, 3, 1, 2, 3, 4, 1, 1, 1, 1
OFFSET
1,1
COMMENTS
First differences of A327985, which gives indices of zeros in A051023.
FORMULA
a(n) = A327985(1+n) - A327985(n).
EXAMPLE
The evolution of one-dimensional cellular automaton rule 30 proceeds as follows, when started from a single alive (1) cell:
0: (1)
1: 1(1)1
2: 11(0)01
3: 110(1)111
4: 1100(1)0001
5: 11011(1)10111
6: 110010(0)001001
7: 1101111(0)0111111
8: 11001000(1)11000001
9: 110111101(1)001000111
10: 1100100001(0)1111011001
11: 11011110011(0)10000101111
12: 110010001110(0)110011010001
When noting up the distances between successive 0's in its central column (indicated here with parentheses), we obtain 6-2 (as the first 0 is on row 2, and the second is on row 6), 7-6, 10-7, 11-10, 12-11, ..., that is, the first terms of this sequence: 4, 1, 3, 1, 1, ...
MATHEMATICA
A327980list[upto_]:=Differences[Flatten[Position[CellularAutomaton[30, {{1}, 0}, {upto, {{0}}}], 0]]]; A327980list[300] (* Paolo Xausa, Jun 01 2023 *)
PROG
(PARI)
up_to = 105;
A269160(n) = bitxor(n, bitor(2*n, 4*n));
A327980list(up_to) = { my(v=vector(up_to), s=25, n=2, on=n, k=0); while(k<up_to, n++; s = A269160(s); if(!((s>>n)%2), k++; v[k] = (n-on); on=n)); (v); }
v327980 = A327980list(up_to);
A327980(n) = v327980[n];
KEYWORD
nonn
AUTHOR
Antti Karttunen, Oct 03 2019
STATUS
approved