login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A217684 Continued fraction expansion for log_10((1+sqrt(5))/2). 4
0, 4, 1, 3, 1, 1, 1, 6, 4, 2, 1, 10, 1, 4, 46, 3, 1, 2, 1, 1, 1, 1, 3, 16, 2, 5, 1, 3, 2, 2, 9, 1, 1, 1, 2, 6, 106, 2, 3, 1, 3, 1, 1, 16, 20, 1, 1, 1, 4, 37, 1, 6, 1, 2, 6, 1, 1, 4, 2, 1, 2, 72, 10, 1, 1, 2, 3, 8, 1, 1, 1, 1, 1, 2, 1, 2, 3, 9, 1, 2, 4, 3, 2, 9, 1, 4, 2, 2, 2, 4 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

The significance of this sequence is that the convergents of the continued fraction expansion of log_10((1+sqrt(5))/2) give the sequence of fractions p/q such that Lucas(q) gets increasingly closer to 10^p. For example, the first few convergents are 0/1, 1/4, 1/5, 4/19, 5/24, 9/43, 14/67, 93/445.

Clearly as we can see below

Lucas(19) = 9349 ~ 10^4, error = 6.51%

Lucas(24) = 103682 ~ 10^5, error = 3.682%

Lucas(43) = 969323029 ~ 10^9, error = 3.068%

Lucas(67) = 100501350283429 ~ 10^14, error = 0.501%

In fact, for sufficiently large values of n, we will have that Lucas(n) ~ ((1+sqrt(5))/2)^n.

LINKS

Table of n, a(n) for n=0..89.

FORMULA

A217685(n) = a(n)*A217685(n-1) + A217685(n-2).

A217686(n) = a(n)*A217686(n-1) + A217686(n-2).

MATHEMATICA

ContinuedFraction[Log[10, GoldenRatio], 90] (* Jean-Fran├žois Alcover, Oct 17 2012 *)

PROG

(PARI) default(realprecision, 99); contfrac(log((1+sqrt(5))/2)/log(10))

CROSSREFS

Cf. A097348, A217685, A217686.

Sequence in context: A025016 A094244 A075447 * A327980 A094804 A232633

Adjacent sequences:  A217681 A217682 A217683 * A217685 A217686 A217687

KEYWORD

nonn,cofr

AUTHOR

V. Raman, Oct 11 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 26 16:44 EDT 2021. Contains 346294 sequences. (Running on oeis4.)