Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Jun 26 2023 14:35:22
%S 4,1,3,1,1,2,3,1,2,1,4,2,4,1,4,2,2,3,1,1,1,3,1,2,2,3,2,2,7,1,1,1,5,1,
%T 1,2,2,4,1,1,1,1,2,1,2,3,1,1,4,1,1,3,3,3,2,1,1,1,1,1,1,2,1,1,6,4,2,1,
%U 4,1,1,4,2,4,1,1,1,1,3,1,2,1,1,3,1,5,1,7,1,1,1,1,1,8,3,1,2,3,4,1,1,1,1
%N Distances between successive zeros in A051023, the middle column of rule-30 1-D cellular automaton, when started from a lone 1 cell.
%C First differences of A327985, which gives indices of zeros in A051023.
%H Antti Karttunen, <a href="/A327980/b327980.txt">Table of n, a(n) for n = 1..100000</a>
%H <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>
%F a(n) = A327985(1+n) - A327985(n).
%e The evolution of one-dimensional cellular automaton rule 30 proceeds as follows, when started from a single alive (1) cell:
%e 0: (1)
%e 1: 1(1)1
%e 2: 11(0)01
%e 3: 110(1)111
%e 4: 1100(1)0001
%e 5: 11011(1)10111
%e 6: 110010(0)001001
%e 7: 1101111(0)0111111
%e 8: 11001000(1)11000001
%e 9: 110111101(1)001000111
%e 10: 1100100001(0)1111011001
%e 11: 11011110011(0)10000101111
%e 12: 110010001110(0)110011010001
%e When noting up the distances between successive 0's in its central column (indicated here with parentheses), we obtain 6-2 (as the first 0 is on row 2, and the second is on row 6), 7-6, 10-7, 11-10, 12-11, ..., that is, the first terms of this sequence: 4, 1, 3, 1, 1, ...
%t A327980list[upto_]:=Differences[Flatten[Position[CellularAutomaton[30,{{1},0},{upto,{{0}}}],0]]];A327980list[300] (* _Paolo Xausa_, Jun 01 2023 *)
%o (PARI)
%o up_to = 105;
%o A269160(n) = bitxor(n, bitor(2*n, 4*n));
%o A327980list(up_to) = { my(v=vector(up_to), s=25, n=2, on=n, k=0); while(k<up_to, n++; s = A269160(s); if(!((s>>n)%2), k++; v[k] = (n-on); on=n)); (v); }
%o v327980 = A327980list(up_to);
%o A327980(n) = v327980[n];
%Y Cf. A051023, A110240, A245549, A269160, A327981, A327983, A327985.
%K nonn
%O 1,1
%A _Antti Karttunen_, Oct 03 2019