login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A330524
Lexicographically earliest sequence of positive terms such that for any distinct i and j, a(i) | a(j+1) <> a(j) | a(j+1) (where "|" corresponds to binary concatenation, A163621).
2
1, 1, 2, 1, 3, 2, 2, 3, 3, 4, 1, 4, 2, 4, 3, 5, 2, 5, 3, 6, 1, 8, 1, 9, 2, 8, 2, 9, 3, 7, 4, 4, 5, 4, 8, 3, 8, 4, 9, 4, 10, 2, 11, 2, 13, 1, 10, 4, 11, 3, 9, 5, 8, 5, 9, 6, 4, 15, 2, 16, 1, 16, 2, 17, 2, 18, 4, 16, 3, 10, 5, 10, 6, 5, 11, 4, 17, 3, 11, 5, 14
OFFSET
1,3
COMMENTS
This sequence is a binary variant of A318225.
This sequence has similarities with A088177; here we combine successive terms by concatenation, there by multiplication.
This sequence is necessarily unbounded.
Also, the value 1 appears infinitely many times.
LINKS
EXAMPLE
The first terms, alongside their binary representation and that of the concatenation of two consecutive terms, are:
n a(n) bin(a(n)) bin(a(n)|a(n+1))
-- ---- --------- ----------------
1 1 1 11
2 1 1 110
3 2 10 101
4 1 1 111
5 3 11 1110
6 2 10 1010
7 2 10 1011
8 3 11 1111
9 3 11 11100
10 4 100 1001
11 1 1 1100
12 4 100 10010
PROG
(PARI) s=0; v=1; for (n=1, 81, print1 (v", "); for (w=1, oo, if (!bittest(s, k=v*2^#binary(w)+w), s+=2^k; v=w; break)))
CROSSREFS
See A330525 for the concatenation of consecutive terms.
Sequence in context: A205784 A066272 A237130 * A336037 A058773 A122805
KEYWORD
nonn,base
AUTHOR
Rémy Sigrist, Dec 17 2019
STATUS
approved