This site is supported by donations to The OEIS Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A205781 Least positive integer j such that n divides C(k)-C(j), where k, as in A205780, is the least number for which there is such a j, and C=A007598 (squared Fibonacci numbers). 0
 1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 3, 1, 4, 1, 2, 3, 6, 4, 2, 2, 2, 1, 2, 1, 4, 4, 3, 1, 5, 2, 3, 3, 2, 6, 5, 4, 3, 7, 4, 3, 8, 1, 3, 1, 1, 3, 6, 4, 3, 4, 6, 4, 2, 3, 3, 1, 2, 3, 3, 2, 12, 4, 1, 2, 7, 1, 2, 6, 10, 6, 2, 4, 2, 16, 4, 7, 1, 5, 4, 3, 5, 6, 11, 1, 7, 3, 4, 1, 8, 1, 5, 3, 4, 4, 3, 2, 5 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,5 COMMENTS For a guide to related sequences, see A204892. LINKS EXAMPLE 1 divides C(2)-C(1) -> k=2, j=1 2 divides C(3)-C(1) -> k=3, j=1 3 divides C(2)-C(1) -> k=2, j=1 4 divides C(3)-C(1) -> k=3, j=1 5 divides C(3)-C(2) -> k=3, j=2 MATHEMATICA s = Table[(Fibonacci[n + 1])^2, {n, 1, 120}]; lk = Table[   NestWhile[# + 1 &, 1,    Min[Table[Mod[s[[#]] - s[[j]], z], {j, 1, # - 1}]] =!= 0 &], {z, 1,     Length[s]}] Table[NestWhile[# + 1 &, 1,   Mod[s[[lk[[j]]]] - s[[#]], j] =!= 0 &], {j, 1, Length[lk]}] (* Peter J. C. Moses, Jan 27 2012 *) CROSSREFS Cf. A204892, A007598. Sequence in context: A078349 A266476 A081327 * A280444 A030422 A090001 Adjacent sequences:  A205778 A205779 A205780 * A205782 A205783 A205784 KEYWORD nonn AUTHOR Clark Kimberling, Feb 01 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 18 06:34 EST 2019. Contains 319269 sequences. (Running on oeis4.)