login
A357982
Replace prime(k) with A000009(k) in the prime factorization of n.
3
1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 3, 1, 4, 2, 2, 1, 5, 1, 6, 2, 2, 3, 8, 1, 4, 4, 1, 2, 10, 2, 12, 1, 3, 5, 4, 1, 15, 6, 4, 2, 18, 2, 22, 3, 2, 8, 27, 1, 4, 4, 5, 4, 32, 1, 6, 2, 6, 10, 38, 2, 46, 12, 2, 1, 8, 3, 54, 5, 8, 4, 64, 1, 76, 15, 4, 6, 6, 4, 89, 2, 1
OFFSET
1,5
COMMENTS
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. This sequence gives the number of ways to choose a strict partition of each prime index of n.
The indices i, where a(i) = 1, form A003586, and the indices j, where a(j) > 1, form A059485. - Ivan N. Ianakiev, Oct 27 2022
EXAMPLE
The a(121) = 9 twice-partitions are: (5)(5), (5)(41), (5)(32), (41)(5), (41)(41), (41)(32), (32)(5), (32)(41), (32)(32).
MATHEMATICA
Table[Times@@Cases[FactorInteger[n], {p_, k_}:>PartitionsQ[PrimePi[p]]^k], {n, 100}]
PROG
(PARI) f9(n) = polcoeff( prod( k=1, n, 1 + x^k, 1 + x * O(x^n)), n); \\ A000009
a(n) = my(f=factor(n)); for (k=1, #f~, f[k, 1] = f9(primepi(f[k, 1]))); factorback(f); \\ Michel Marcus, Oct 26 2022
CROSSREFS
Other multiplicative sequences: A003961, A357852, A064988, A064989, A357980.
The non-strict version is A299200.
A horizontal version is A357978, non-strict A357977.
A000040 lists the primes.
A056239 adds up prime indices, row-sums of A112798.
Sequence in context: A081327 A363279 A205781 * A280444 A030422 A090001
KEYWORD
nonn,mult
AUTHOR
Gus Wiseman, Oct 25 2022
STATUS
approved