login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A357985
Counterclockwise square spiral constructed using the integers so that a(n) plus all other numbers currently visible from the current number equals n; start with a(0) = 0.
2
0, 1, 1, 1, 2, 1, 3, -1, 6, -2, -1, 0, 1, 9, -8, 15, -5, -7, -10, 14, -29, 58, -78, 101, -118, 150, -61, 309, -307, 553, -494, -186, -644, 315, -1177, 731, -1458, 3480, -5183, 7096, -8328, 9735, -10882, 7200, -29452, 31322, -52670, 51401, -65210, 61001, 11318, 135012, -109687, 259226, -221542
OFFSET
0,5
COMMENTS
A number is visible from the current number if, given that it has coordinates (x,y) relative to the current number, the greatest common divisor of |x| and |y| is 1.
The magnitude of the numbers grow surprisingly quickly, e.g., a(150) = -4346232663618226. The only known terms that equal zero are a(0) and a(11); it is unknown whether more exist or if all integers eventually appear.
EXAMPLE
The spiral begins:
.
.
.
-5....15...-8....9.....1 553
| | |
-7 2....1.....1 0 -307
| | | | |
-10 1 0.....1 -1 309
| | | |
14 3...-1.....6... -2 -61
| |
-29...58...-78...101...-118...150
.
.
a(6) = 3 as from square 6, at (-1,1) relative to the starting square, the numbers currently visible are 1 (at -1,0), 0 (at 0,0), 1 (at 0,1), and 1 (at 1,0). These four numbers sum to 3, so a(6) = 3 so that 3 + 3 = 6.
a(7) = -1 as from square 7, at (0,-1) relative to the starting square, the numbers currently visible are 3 (at -1,-1), 1 (at -1,0), 2 (at -1,1), 0 (at 0,0), 1 (at 1,1), and 1 (at 1,0). These six numbers sum to 8, so a(7) = -1 so that -1 + 8 = 7.
CROSSREFS
KEYWORD
sign
AUTHOR
Scott R. Shannon, Oct 23 2022
STATUS
approved