login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A357991
Lexicographically earliest counterclockwise square spiral constructed using the nonnegative integers so that a(n) plus all other numbers currently visible from the current number form a distinct sum; start with a(0) = 0.
2
0, 1, 1, 1, 2, 1, 3, 0, 4, 0, 0, 0, 1, 5, 0, 6, 0, 0, 1, 0, 2, 4, 0, 7, 0, 8, 0, 7, 0, 7, 0, 0, 0, 0, 0, 0, 0, 12, 0, 13, 0, 16, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 12, 0, 22, 0, 19, 0, 20, 1, 0, 0, 0, 0, 0, 0, 0, 0, 17, 0, 25, 0, 24, 0, 20, 1, 26, 0, 28, 0, 26, 0, 31, 0, 31, 0, 0, 0, 0
OFFSET
0,5
COMMENTS
A number is visible from the current number if, given that it has coordinates (x,y) relative to the current number, the greatest common divisor of |x| and |y| is 1.
In the first 50000 terms the smallest number that has not appeared is 9; it is unknown if all the positive numbers eventually appear.
EXAMPLE
The spiral begins:
.
.
.
0---6---0---5---1 7
| | |
0 2---1---1 0 0
| | | | |
1 1 0---1 0 7
| | | |
0 3---0---4---0 0
| |
2---4---0---7---0---8
.
.
a(6) = 3 as from square 6, at (-1,-1) relative to the starting square, the numbers currently visible are 1 (at -1,0), 0 (at 0,0), 1 (at 1,0), and 1 (at 0,1). These three numbers sum to 3, so a(6) = 3 so that 3 + 3 = 6, the smallest sum that has not previous occurred.
a(8) = 4 as from square 8, at (1,-1) relative to the starting square, the numbers currently visible are 0 (at 0,-1), 1 (at -1,0), 0 (at 0,0), 1 (at 1,0), and 1 (at 0,1). These five numbers sum to 3, so a(8) = 4 so that 3 + 4 = 7, the smallest sum that has not previous occurred. Note that a(7) = 0 and forms a sum of 8.
CROSSREFS
KEYWORD
nonn
AUTHOR
Scott R. Shannon, Oct 23 2022
STATUS
approved