OFFSET
1,1
COMMENTS
As discussed in A257820, the absolute value of the imaginary part is continuous and its value is a well behaved function of any real argument, excepting z=+1. The above value corresponds to |imag(li(z))| at z=-A257821, the unique point in the real interval (-infinity,+1) where the corresponding real part is zero.
LINKS
Stanislav Sykora, Table of n, a(n) for n = 1..2000
Eric Weisstein's World of Mathematics, Logarithmic Integral
Wikipedia, Logarithmic integral function
EXAMPLE
3.87450104931287362237096971350633901238405804054504846377340...
MATHEMATICA
RealDigits[Im[LogIntegral[-a/.FindRoot[Re[LogIntegral[-a]]==0, {a, 2}, WorkingPrecision->120]]]][[1]] (* Vaclav Kotesovec, May 11 2015 *)
PROG
(PARI) li(z) = {my(c=z+0.0*I); \\ If z is real, convert it to complex
if(imag(c)<0, return(-Pi*I-eint1(-log(c))),
return(+Pi*I-eint1(-log(c)))); }
root=solve(x=-3, -1, real(li(x))); \\ Better use excess realprecision
a=imag(li(root))
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Stanislav Sykora, May 11 2015
STATUS
approved