login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A357319
Decimal expansion of 6*Pi*Gamma(2/3)^2/(sqrt(3)*Gamma(1/3)^4).
0
3, 8, 7, 4, 3, 8, 2, 3, 8, 7, 8, 4, 8, 8, 5, 4, 2, 0, 5, 6, 9, 5, 6, 4, 8, 8, 4, 7, 5, 4, 0, 1, 8, 9, 4, 8, 0, 4, 9, 6, 0, 3, 8, 8, 3, 3, 6, 3, 6, 8, 4, 8, 9, 0, 4, 3, 9, 4, 6, 4, 4, 5, 7, 5, 5, 8, 7, 6, 5, 4, 3, 9, 0, 4, 2, 8, 9, 6, 0, 6, 0, 3, 4, 0, 6, 6, 2, 8, 6, 1
OFFSET
0,1
LINKS
Markus Faulhuber, Anupam Gumber, and Irina Shafkulovska, The AGM of Gauss, Ramanujan's corresponding theory, and spectral bounds of self-adjoint operators, arXiv:2209.04202 [math.CA], 2022, p. 21.
FORMULA
Equals 6*A000796*A073006^2/(A002194*A073005^4).
Equals (8*Pi^3)/(sqrt(3)*Gamma(1/3)^6) = A212003/(A002194*A073005^6). - Peter Luschny, Sep 24 2022
EXAMPLE
0.3874382387848854205695648847540189480496...
MAPLE
(8*Pi^3)/(sqrt(3)*GAMMA(1/3)^6): evalf(%, 92); # Peter Luschny, Sep 24 2022
MATHEMATICA
First[RealDigits[N[6*Pi*Gamma[2/3]^2/(Sqrt[3]*Gamma[1/3]^4), 90]]]
PROG
(PARI) 6*Pi*gamma(2/3)^2/(sqrt(3)*gamma(1/3)^4) \\ Michel Marcus, Sep 24 2022
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Stefano Spezia, Sep 23 2022
STATUS
approved