OFFSET
0,3
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
a(n) = Sum_{k=1..n} 2^(n-k) * k^(k-1) * |Stirling1(n,k)|.
a(n) ~ 2^(n - 1/2) * n^(n-1) / ((-1 + exp(2*exp(-1)))^(n - 1/2) * exp(n - 2*n*exp(-1) - 1/2)). - Vaclav Kotesovec, Oct 04 2022
E.g.f.: Series_Reversion( (1 - exp(-2 * x * exp(-x)))/2 ). - Seiichi Manyama, Sep 11 2024
MATHEMATICA
With[{m = 20}, Range[0, m]! * CoefficientList[Series[-ProductLog[Log[1 - 2*x]/2], {x, 0, m}], x]] (* Amiram Eldar, Sep 24 2022 *)
PROG
(PARI) my(N=20, x='x+O('x^N)); concat(0, Vec(serlaplace(-lambertw(log(1-2*x)/2))))
(PARI) a(n) = sum(k=1, n, 2^(n-k)*k^(k-1)*abs(stirling(n, k, 1)));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 24 2022
STATUS
approved