login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A357321
Expansion of e.g.f. -LambertW(log(1 - 2*x)/2).
2
0, 1, 4, 29, 308, 4349, 77094, 1650893, 41532280, 1201865049, 39351776970, 1438731784137, 58107225611412, 2569486856423733, 123475320944016846, 6407225728624769925, 357061085760608504304, 21268522319028809507889, 1348496822257863921774738
OFFSET
0,3
FORMULA
a(n) = Sum_{k=1..n} 2^(n-k) * k^(k-1) * |Stirling1(n,k)|.
a(n) ~ 2^(n - 1/2) * n^(n-1) / ((-1 + exp(2*exp(-1)))^(n - 1/2) * exp(n - 2*n*exp(-1) - 1/2)). - Vaclav Kotesovec, Oct 04 2022
E.g.f.: Series_Reversion( (1 - exp(-2 * x * exp(-x)))/2 ). - Seiichi Manyama, Sep 11 2024
MATHEMATICA
With[{m = 20}, Range[0, m]! * CoefficientList[Series[-ProductLog[Log[1 - 2*x]/2], {x, 0, m}], x]] (* Amiram Eldar, Sep 24 2022 *)
PROG
(PARI) my(N=20, x='x+O('x^N)); concat(0, Vec(serlaplace(-lambertw(log(1-2*x)/2))))
(PARI) a(n) = sum(k=1, n, 2^(n-k)*k^(k-1)*abs(stirling(n, k, 1)));
CROSSREFS
Cf. A357333.
Sequence in context: A360834 A349599 A214654 * A067146 A210949 A014622
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 24 2022
STATUS
approved