login
A360834
Expansion of Sum_{k>=0} (k * x)^k / (1 - (k * x)^2)^(k+1).
2
1, 1, 4, 29, 304, 4100, 67520, 1314167, 29520128, 751658635, 21393444864, 673046604600, 23192501108736, 868730852002205, 35145114836811776, 1527192185786650417, 70941146068492943360, 3508043437942077557884, 183989995827118805352448
OFFSET
0,3
FORMULA
a(n) = Sum_{k=0..floor(n/2)} (n-2*k)^n * binomial(n-k,k).
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (k*x)^k/(1-(k*x)^2)^(k+1)))
(PARI) a(n) = sum(k=0, n\2, (n-2*k)^n*binomial(n-k, k));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Feb 22 2023
STATUS
approved