login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A360787
Expansion of Sum_{k>=0} x^k / (1 - (k*x)^2)^(k+1).
4
1, 1, 1, 3, 13, 40, 177, 965, 4733, 28103, 184065, 1191888, 8713549, 67005689, 528870257, 4526024267, 40051790333, 368513578472, 3583302492545, 35868588067501, 373781214260749, 4052932682659599, 45218033687522481, 523234757502985824, 6245693941097387773
OFFSET
0,4
FORMULA
a(n) = Sum_{k=0..floor(n/2)} (n-2*k)^(2*k) * binomial(n-k,k).
MATHEMATICA
Join[{1}, Table[Sum[Binomial[n-k, k] * (n-2*k)^(2*k), {k, 0, n/2}], {n, 1, 30}]] (* Vaclav Kotesovec, Feb 21 2023 *)
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, x^k/(1-(k*x)^2)^(k+1)))
(PARI) a(n) = sum(k=0, n\2, (n-2*k)^(2*k)*binomial(n-k, k));
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Feb 20 2023
STATUS
approved