login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A360784
Number of multisets of nonempty strict integer partitions with a total of n parts and total sum of 2n.
3
1, 1, 3, 8, 18, 39, 86, 175, 352, 688, 1318, 2472, 4576, 8322, 14959, 26560, 46657, 81130, 139866, 239047, 405496, 682891, 1142466, 1899344, 3139432, 5160455, 8438871, 13732292, 22242647, 35867937, 57597730, 92121145, 146775205, 232998683, 368579188, 581091003
OFFSET
0,3
LINKS
FORMULA
a(n) = A360763(2n,n).
EXAMPLE
a(3) = 8: {[1,2,3]}, {[1],[1,4]}, {[1],[2,3]}, {[2],[1,3]}, {[3],[1,2]}, {[1],[1],[4]}, {[1],[2],[3]}, {[2],[2],[2]}.
MAPLE
h:= proc(n, i) option remember; expand(`if`(n=0, 1,
`if`(i<1, 0, h(n, i-1)+x*h(n-i, min(n-i, i-1)))))
end:
g:= proc(n, i, j) option remember; expand(`if`(j=0, 1, `if`(i<0, 0, add(
g(n, i-1, j-k)*x^(i*k)*binomial(coeff(h(n$2), x, i)+k-1, k), k=0..j))))
end:
b:= proc(n, i) option remember; expand(`if`(n=0, 1,
`if`(i<1, 0, add(b(n-i*j, i-1)*g(i$2, j), j=0..n/i))))
end:
a:= n-> coeff(b(2*n$2), x, n):
seq(a(n), n=0..35);
MATHEMATICA
h[n_, i_] := h[n, i] = Expand[If[n == 0, 1, If[i < 1, 0, h[n, i - 1] + x*h[n - i, Min[n - i, i - 1]]]]];
g[n_, i_, j_] := g[n, i, j] = Expand[If[j == 0, 1, If[i < 0, 0, Sum[g[n, i - 1, j - k]*x^(i*k)*Binomial[Coefficient[h[n, n], x, i] + k - 1, k], {k, 0, j}]]]];
b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1]*g[i, i, j], {j, 0, n/i}]]]];
a[n_] := Coefficient[b[2 n, 2 n], x, n];
Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Nov 21 2023, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Feb 20 2023
STATUS
approved