login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A360781
Primes p such that at least one number remains prime when p is bracketed by a single digit d; that is, at least one instance of d//p//d is prime where // means concatenation.
1
2, 3, 5, 7, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 101, 103, 107, 109, 113, 131, 139, 149, 151, 157, 163, 173, 179, 191, 193, 197, 211, 223, 227, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331
OFFSET
1,1
COMMENTS
The bracketing digit d must be 1, 3, 7, or 9.
LINKS
FORMULA
Union of A069687, A069688, A069689, A069690. - Alois P. Heinz, Feb 22 2023
EXAMPLE
263 is included because 263 is a prime and 32633 (and also 92639) is a prime.
MAPLE
q:= p-> ormap(isprime, map(d-> parse(cat(d, p, d)), [1, 3, 7, 9])):
select(q, [ithprime(i)$i=1..67])[]; # Alois P. Heinz, Feb 22 2023
MATHEMATICA
brkQ[p_]:=AnyTrue[Table[FromDigits[Join[{d}, IntegerDigits[p], {d}]], {d, {1, 3, 7, 9}}], PrimeQ]; Select[Prime[Range[100]], brkQ]
PROG
(Python)
from sympy import isprime, nextprime
from itertools import islice
def agen(): # generator of terms
p = 2
while True:
sp = str(p)
if any(isprime(int(d+sp+d)) for d in "1379"):
yield p
p = nextprime(p)
print(list(islice(agen(), 57))) # Michael S. Branicky, Feb 20 2023
(PARI) is(p) = my(d=digits(p)); forstep(k=1, 9, 2, if (isprime(fromdigits(concat(k, concat(d, k)))), return(1)));
isok(p) = if (isprime(p), is(p)); \\ Michel Marcus, Feb 20 2023
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Harvey P. Dale, Feb 20 2023
STATUS
approved