The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A357322 Expansion of e.g.f. -LambertW(log(1 - 3*x)/3). 2
 0, 1, 5, 45, 586, 10024, 213084, 5428072, 161475320, 5501761488, 211466328400, 9057714349672, 428022643010544, 22127292215218072, 1242503403120434168, 75319473068729478360, 4902798528238919060224, 341102498012848479889408 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Eric Weisstein's World of Mathematics, Lambert W-Function. FORMULA a(n) = Sum_{k=1..n} 3^(n-k) * k^(k-1) * |Stirling1(n,k)|. a(n) ~ 3^(n - 1/2) * n^(n-1) / ((-1 + exp(3*exp(-1)))^(n - 1/2) * exp(n - 1/2 - 3*n*exp(-1))). - Vaclav Kotesovec, Oct 04 2022 MATHEMATICA With[{m = 20}, Range[0, m]! * CoefficientList[Series[-ProductLog[Log[1 - 3*x]/3], {x, 0, m}], x]] (* Amiram Eldar, Sep 24 2022 *) PROG (PARI) my(N=20, x='x+O('x^N)); concat(0, Vec(serlaplace(-lambertw(log(1-3*x)/3)))) (PARI) a(n) = sum(k=1, n, 3^(n-k)*k^(k-1)*abs(stirling(n, k, 1))); CROSSREFS Cf. A052807, A357321. Sequence in context: A051539 A007696 A090136 * A090356 A201365 A112940 Adjacent sequences: A357319 A357320 A357321 * A357323 A357324 A357325 KEYWORD nonn AUTHOR Seiichi Manyama, Sep 24 2022 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 29 10:31 EST 2022. Contains 358424 sequences. (Running on oeis4.)