login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of 6*Pi*Gamma(2/3)^2/(sqrt(3)*Gamma(1/3)^4).
0

%I #9 Sep 25 2022 02:14:58

%S 3,8,7,4,3,8,2,3,8,7,8,4,8,8,5,4,2,0,5,6,9,5,6,4,8,8,4,7,5,4,0,1,8,9,

%T 4,8,0,4,9,6,0,3,8,8,3,3,6,3,6,8,4,8,9,0,4,3,9,4,6,4,4,5,7,5,5,8,7,6,

%U 5,4,3,9,0,4,2,8,9,6,0,6,0,3,4,0,6,6,2,8,6,1

%N Decimal expansion of 6*Pi*Gamma(2/3)^2/(sqrt(3)*Gamma(1/3)^4).

%H Markus Faulhuber, Anupam Gumber, and Irina Shafkulovska, <a href="https://arxiv.org/abs/2209.04202">The AGM of Gauss, Ramanujan's corresponding theory, and spectral bounds of self-adjoint operators</a>, arXiv:2209.04202 [math.CA], 2022, p. 21.

%F Equals 6*A000796*A073006^2/(A002194*A073005^4).

%F Equals (8*Pi^3)/(sqrt(3)*Gamma(1/3)^6) = A212003/(A002194*A073005^6). - _Peter Luschny_, Sep 24 2022

%e 0.3874382387848854205695648847540189480496...

%p (8*Pi^3)/(sqrt(3)*GAMMA(1/3)^6): evalf(%, 92); # _Peter Luschny_, Sep 24 2022

%t First[RealDigits[N[6*Pi*Gamma[2/3]^2/(Sqrt[3]*Gamma[1/3]^4), 90]]]

%o (PARI) 6*Pi*gamma(2/3)^2/(sqrt(3)*gamma(1/3)^4) \\ _Michel Marcus_, Sep 24 2022

%Y Cf. A000796, A002194, A073005, A073006, A212003.

%K nonn,cons

%O 0,1

%A _Stefano Spezia_, Sep 23 2022