login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A225016
Decimal expansion of Pi^3/8.
0
3, 8, 7, 5, 7, 8, 4, 5, 8, 5, 0, 3, 7, 4, 7, 7, 5, 2, 1, 9, 3, 4, 5, 3, 9, 3, 8, 3, 3, 8, 7, 6, 7, 4, 4, 0, 0, 2, 7, 8, 1, 6, 1, 0, 7, 0, 7, 3, 5, 6, 3, 8, 4, 6, 1, 7, 6, 8, 0, 6, 7, 2, 6, 2, 9, 7, 5, 7, 9, 9, 3, 6, 4, 6, 8, 3, 2, 1, 3, 2, 5, 4, 6, 9, 5, 8, 3, 7, 6, 2, 9, 0, 7, 5, 3, 6, 0, 7, 7, 4
OFFSET
1,1
FORMULA
Equals Integral_{x>0} log(x)^2/(1+x^2) dx.
Equals Integral_{x=0..Pi/2} log(tan(x))^2 dx.
Equals Integral_{x=0..Pi/2} log(sin(x)^3)*log(sin(x))-(3*Pi/2)*log(2)^2 dx.
Equals (27/7) * Sum_{k>=0} binomial(2*k, k)/((2*k+1)^3*16^k);
Equals (27/7) * 4F3([1/2, 1/2, 1/2, 1/2], [3/2, 3/2, 3/2], 1/4), where pFq() is the generalized hypergeometric function.
From Amiram Eldar, Aug 21 2020: (Start)
Equals Integral_{x=0..oo} x^2/cosh(x) dx.
Equals 2 + Integral_{x=0..oo} x^2 * exp(-x) * tanh(x) dx. (End)
From Gleb Koloskov, Jun 15 2021: (Start)
Equals 2*Integral_{x=0..1} log(x)^2/(1+x^2) dx.
Equals 2*Integral_{x=1..oo} log(x)^2/(1+x^2) dx.
Equals 2*(-1)^n*Integral_{x=-1/e..0} W(n,x)*(1-W(n,x))*log(-W(n,x))^2/x/(1-W(n,x)^4) dx, where W=LambertW, for n=0 and n=-1. (End)
EXAMPLE
3.875784585037477521934539383387674400278161070735638461768067262975799364683...
MATHEMATICA
RealDigits[Pi^3/8, 10, 100][[1]]
PROG
(PARI) Pi^3/8 \\ Charles R Greathouse IV, Oct 01 2022
CROSSREFS
KEYWORD
nonn,cons,easy
AUTHOR
EXTENSIONS
Offset corrected by Rick L. Shepherd, Jan 01 2014
STATUS
approved