login
A225015
Number of sawtooth patterns of length 1 in all Dyck paths of semilength n.
2
0, 1, 1, 5, 18, 66, 245, 918, 3465, 13156, 50193, 192270, 739024, 2848860, 11009778, 42642460, 165480975, 643281480, 2504501625, 9764299710, 38115568260, 148955040300, 582714871830, 2281745337300, 8942420595810, 35074414899576, 137672461877850, 540756483094828
OFFSET
0,4
COMMENTS
A sawtooth pattern of length 1 is UD not followed by UD.
First differences of A024482.
LINKS
FORMULA
a(0)=0, a(1)=1, a(n) = A024482(n) - A024482(n-1) for n >= 2.
From G. C. Greubel, Apr 03 2024: (Start)
G.f.: (1-x)^2*(1 - sqrt(1-4*x))/(2*sqrt(1-4*x)).
E.g.f.: -(1/4)*(2-4*x+x^2) + (1/12)*Exp(2*x)*((6-12*x+43*x^2-24*x^3) *BesselI(0, 2*x) - 4*x*(7-5*x)*BesselI(1,2*x) - 3*x^2*(13-8*x)* BesselI(2,2*x)). (End)
MAPLE
a:= proc(n) option remember; `if`(n<4, [0, 1, 1, 5][n+1],
(n-1)*(3*n-4)*(4*n-10)*a(n-1)/(n*(n-2)*(3*n-7)))
end:
seq(a(n), n=0..30); # Alois P. Heinz, Apr 24 2013
MATHEMATICA
Join[{0, 0, 1}, Table[(Binomial[2n, n]-Binomial[2n-2, n-1])/2, {n, 2, 25}]] // Differences (* Jean-François Alcover, Nov 12 2020 *)
PROG
(Magma)
A024482:= func< n | (3*n-2)*Catalan(n-1)/2 >;
A225015:= func< n | n le 2 select Floor((n+1)/2) else A024482(n) - A024482(n-1) >;
[A225015(n): n in [0..40]]; // G. C. Greubel, Apr 03 2024
(SageMath)
def A024482(n): return (3*n-2)*catalan_number(n-1)/2
def A225015(n): return floor((n+1)/2) if n<3 else A024482(n) - A024482(n-1)
[A225015(n) for n in range(41)] # G. C. Greubel, Apr 03 2024
CROSSREFS
Sequence in context: A184309 A051944 A153373 * A371871 A166677 A318062
KEYWORD
nonn
AUTHOR
David Scambler, Apr 23 2013
STATUS
approved