login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A371871
a(n) = Sum_{k=0..floor(n/3)} binomial(2*n-3*k-2,n-3*k).
3
1, 0, 1, 5, 18, 66, 246, 924, 3493, 13277, 50697, 194327, 747319, 2882061, 11142027, 43167573, 167561586, 651513594, 2537041938, 9892847952, 38623197264, 150959213886, 590626854072, 2312979822738, 9065733950526, 35561306875380, 139595183125750
OFFSET
0,4
FORMULA
a(n) = [x^n] 1/((1-x^3) * (1-x)^(n-1)).
D-finite with recurrence 9*n*a(n) +3*(-17*n+16)*a(n-1) +3*(21*n-50)*a(n-2) +(-17*n+16)*a(n-3) +10*(2*n-5)*a(n-4)=0. - R. J. Mathar, Apr 22 2024
MAPLE
A371871 := proc(n)
1/(1-x^3)/(1-x)^(n-1) ;
coeftayl(%, x=0, n) ;
end proc:
seq(A371871(n), n=0..60) ; # R. J. Mathar, Apr 22 2024
PROG
(PARI) a(n) = sum(k=0, n\3, binomial(2*n-3*k-2, n-3*k));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Apr 10 2024
STATUS
approved