OFFSET
1,1
COMMENTS
An Eisenstein triple is a triple (a,b,c) of positive integers with a<c<b and a^2 - a*b + b^2 = c^2. It is primitive if a, b, and c are relatively prime.
LINKS
Danny Rorabaugh, Table of n, a(n) for n = 1..1494
Russell A. Gordon, Properties of Eisenstein Triples, Mathematics Magazine 85 (2012), 12-25.
EXAMPLE
(a,b,c)=(3,8,7) is an Eisenstein triple since 3<7<8 and 3^2 - 3*8 + 8^2 = 7^2. GCD(3,8,7) = 1, so the triple is primitive. No Eisenstein triple exists with b<8, so a(1)=3, a(2)=8, a(3)=7.
MATHEMATICA
x = {}; For[b = 1, b <= 77, b++, For[c = 1, c < b, c++, For[a = 1, a < c, a++, {If[(a^2 - a*b + b^2 == c^2) && (GCD[a, b, c] == 1), AppendTo[x, {a, b, c}]]}]]]; Flatten[x]
CROSSREFS
KEYWORD
nonn
AUTHOR
John W. Layman, May 09 2012
STATUS
approved