login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A201220
Numbers m such that m, m-1, m-2 and m-3 are 1,2,3,4-almost primes respectively.
1
107, 263, 347, 479, 863, 887, 1019, 2063, 2447, 3023, 3167, 3623, 5387, 5399, 5879, 6599, 6983, 7079, 8423, 8699, 9743, 9887, 10463, 11807, 12263, 12347, 14207, 15383, 15767, 18959, 20663, 22343, 23039, 23567, 24239, 27239, 32183, 33647, 33767, 37799
OFFSET
1,1
COMMENTS
Following a suggestion of Claudio Meller.
m is of the form 12k-1, so m-2 is a multiple of 3 and m-3 is a multiple of 4.
LINKS
EXAMPLE
6599 is prime, 6598=2*3299 is semiprime, 6597=3*3*733 is 3-almost prime, 6596=2*2*17*97 is 4-almost prime.
MATHEMATICA
primeCount[n_] := Plus @@ Transpose[FactorInteger[n]][[2]]; Select[Range[40000], primeCount[#] == 1 && primeCount[#-1] == 2 && primeCount[#-2] == 3 && primeCount[#-3] == 4 &] (* T. D. Noe, Nov 28 2011 *)
Select[Range[40000], PrimeOmega[Range[#, #+3]]=={4, 3, 2, 1}&]+3 (* Harvey P. Dale, Dec 10 2011 *)
SequencePosition[PrimeOmega[Range[40000]], {4, 3, 2, 1}][[;; , 2]] (* Harvey P. Dale, Oct 08 2023 *)
PROG
(PARI) list(lim)=my(v=List(), L=(lim-2)\3, t); forprime(p=3, L\3, forprime(q=3, min(p, L\p), t=3*p*q+2; if(isprime(t) && isprime((t-1)/2) && bigomega(t-3)==4, listput(v, t)))); Set(v) \\ Charles R Greathouse IV, Feb 02 2017
CROSSREFS
Subsequence of A005385 and of A201147.
Sequence in context: A142914 A089635 A248402 * A088563 A142222 A123300
KEYWORD
nonn
AUTHOR
Antonio Roldán, Nov 28 2011
STATUS
approved