OFFSET
0,1
REFERENCES
George Boros and Victor Moll, Irresistible Integrals: Symbolics, Analysis and Experiments in the Evaluation of Integrals, Cambridge University Press, Cambridge, 2004, Chap. 7.
Jonathan Borwein and Peter Borwein, Pi and the AGM, John Wiley & Sons, New York, 1987, Chap. 11.
Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.6.3, pp. 43-44.
LINKS
Dirk Huylebrouck, Similarities in irrationality proofs for Pi, ln2, zeta(2) and zeta(3), Amer. Math. Monthly, Vol. 108, No. 3 (2001), pp. 222-231.
Jonathan Sondow, A faster product for pi and a new integral for ln(pi/2), The American Mathematical Monthly, Vol. 112, No. 8 (2005), pp. 729-734; Editor's endnotes, ibid., Vol. 113, No. 7 (2006), pp. 670-671; arXiv preprint, arXiv:math/0401406 [math.NT], 2004.
FORMULA
Equals Sum_{n>=1} zeta(2*n)/(n*2^(2*n)) (cf. Boros & Moll p. 131). - Jean-François Alcover, Apr 29 2013
Equals Re(log(log(I))). - Stanislav Sykora, May 09 2015
Equals Integral_{-oo..+oo} -log(1/2 + i*z)/cosh(Pi*z) dz, where i is the imaginary unit. - Peter Luschny, Apr 08 2018
Equals Integral_{0..Pi/2} (2/(Pi-2*t)-tan(t)) dt. - Clark Kimberling, Jul 10 2020
Equals -Sum_{k>=1} log(1 - 1/(2*k)^2). - Amiram Eldar, Aug 12 2020
Equals Sum_{k>=1} (-1)^(k+1) * log(1 + 1/k). - Amiram Eldar, Jun 26 2021
EXAMPLE
log(Pi/2) = 0.45158270528945486472619522989488214357179467855505...
MATHEMATICA
RealDigits[ Log[Pi/2], 10, 111][[1]]
PROG
(PARI) log(Pi/2) \\ Charles R Greathouse IV, Jun 23 2014
CROSSREFS
KEYWORD
AUTHOR
Jonathan Sondow and Robert G. Wilson v, May 18 2004
STATUS
approved