login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A336888
Irregular triangle read by rows: row n gives the pairs x(n)_j, y(n)_j, for j = 1, 2, ..., A336889(n), such that the legs of nonrectangular (nondegenerate) triangles X(n)_j = sqrt(x(n)_j), Y(n)_j = sqrt(y(n)_j), with base Z(n) = sqrt(z(n)), and integers 1 <= x(n)_j <= y(n)_j <= z(n), lead to primitive quartets (x(n)_j, y(n)_j, z(n), A(n)_j) with positive integer area A(n)_j. Hence z(n) = A337215(n) and A(n)_j = A337216(n, j).
3
4, 5, 1, 5, 5, 8, 2, 4, 4, 10, 4, 5, 1, 8, 5, 5, 5, 13, 13, 13, 4, 5, 5, 8, 8, 13, 4, 17, 4, 10, 5, 9, 2, 10, 1, 13, 5, 13, 1, 17, 9, 17, 13, 17, 5, 8, 4, 13, 8, 13, 4, 17, 16, 17, 1, 20, 4, 10, 2, 20, 10, 20, 18, 20, 4, 26, 8, 9, 4, 13, 5, 16, 1, 20, 13, 20, 17, 20, 8, 25, 16, 29
OFFSET
1,1
COMMENTS
The length of row n is 2*A336889(n).
Row n >= 1 of this irregular triangle is obtained from row n of A336885 after elimination of all pairs x(n)_j = A336885(n, 2*j-1), y(n)_j = A336885(n, 2*j), for j = 1, 2, ..., A336886(n), which lead to imprimitive quartets (x(n)_j, y(n)_j, z(n), A(n)_j) with z(n) = A334818(n) and A(n)_j = A336887(n, j).
Note that the present triples (x(n)_j, y(n)_j, z(n)) with x(n)_j = a(n, 2*j - 1), y(n)_j = a(n, 2*j), for j = 1, 2, ..., A336889(n), and z(n) = A337215(n), are not always primitive. E.g., (a(4, 1), a(4, 2)) = (2, 4) with z(4) = 10 survived the purgation of row n = 4 of A336885 because the area is A_1(4) = A336887(4, 1) = 1 = A337216(4, 1). Similarly (4, 10) with area 3 survived in this row, but the pair (8, 10) with area 4 has been eliminated because it doubles the quartet (4, 5, 5, 2) obtained from row n = 1.
FORMULA
Bisection of index k: With a(n, 2*j-1) = x(n)_j and a(n, 2*j) = y(n)_j, and z(n) = A337215(n), where 1 <= x(n)_j <= y(n)_j <= z(n), the nonrectangular triangle with sides (sqrt(x(n)_j), sqrt(y(n)_j), sqrt(z(n))) has positive integer area A(n)_j = A337216(n, j), and the quartet (x(n)_j, y(n)_j, z(n), A(n)_j) is primitive, for j = 1, 2, ..., A336889(n), and n >= 1.
EXAMPLE
The irregular triangle a(n, k) begins (z(n) = A337215(n)):
n, z(n) \ k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ...
---------------------------------------------------------------------------
1, 5: 4 5
2, 8: 1 5
3, 9: 5 8
4, 10: 2 4 4 10
5, 13: 4 5 1 8
6, 16: 5 5 5 13 13 13
7, 17: 4 5 5 8 8 13 4 17
8, 18: 4 10
9, 20: 5 9 2 10 1 13 5 13 1 17 9 17 13 17
10, 25: 5 8 4 13 8 13 4 17 16 17 1 20
11, 26: 4 10 2 20 10 20 18 20 4 26
12, 29: 8 9 4 13 5 16 1 20 13 20 17 20 8 25 16 29
13, 32: 5 13 9 17 1 25 17 25 5 29
14, 34: 4 18 2 20 10 20 4 26 20 26
15, 36: 10 10 13 13 5 17 13 25 25 25 2 26 5 29 10 34 34 34
16: 37: 5 16 4 17 8 17 5 20 13 20 8 25 20 25 13 32 29 32 4 37
17, 40: 9 13 5 17 13 17 13 25 1 29 17 29 25 29 1 37 9 37
---------------------------------------------------------------------------
n = 18, z(n) = 41: 8 13 16 17 5 20 9 20 4 25 4 29 1 32 17 36 29 36 20 37
5 40 13 40 37 40;
n = 19, z(n) = 45: 13 16 8 17 17 20 4 25 20 29 5 32 4 37 16 37 1 40 8 41;
n = 20, z(n) = 49: 13 20 8 29 25 32 5 40 20 41;
n = 21, z(n) = 50: 18 20 4 26 4 34 20 34 2 36 26 36 4 50.
-------------------------------------------------------------------------
CROSSREFS
Cf. A334818, A336885, A336885, A336887, A336889 (row lengths), A337215(z(n)), A337216 (areas).
Sequence in context: A010662 A131131 A073241 * A336885 A094642 A069284
KEYWORD
nonn,tabf
AUTHOR
Wolfdieter Lang, Aug 19 2020
STATUS
approved