login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A337216
Irregular triangle read by rows: a(n, j) gives the positive integer area A(n)_j corresponding to the nonrectangular triangles with sides (sqrt(x(n)_j), sqrt(y(n)_j), z(n)), with integers 1 <= x(n)_j <= y(n)_j <= z(n), that lead to primitive quartets (x(n)_j, y(n)_j, z(n), a(n, j)). Hence x(n)_j = A336888(n, 2*j-1), y(n)_j = A336888(n, 2*j), for j = 1, 2, ..., A336889(n), and z(n) = A337215(n), for n >= 1.
4
2, 1, 3, 1, 3, 2, 1, 2, 4, 6, 1, 3, 5, 4, 3, 3, 1, 1, 4, 2, 6, 7, 1, 3, 5, 4, 8, 2, 1, 3, 7, 9, 5, 3, 2, 4, 1, 8, 9, 7, 10, 2, 6, 2, 10, 6, 3, 1, 7, 5, 11, 3, 6, 3, 9, 12, 3, 6, 9, 15, 2, 1, 5, 4, 8, 7, 11, 10, 14, 6, 3, 1, 7, 9, 1, 11, 13, 3, 9, 1, 8, 3, 6, 4, 5, 2, 12, 15, 13, 7, 11, 17
OFFSET
1,1
FORMULA
a(n, j) = (1/4)*sqrt(2*(z(n)*y(n)_j + z(n)*x(n)_j + y(n)_j*x(n)_j) - ((x(n)_j)^2 + (y(n)_j)^2 + z(n)^2)), for j = 1, 2, ..., A336889(n), with x(n)_j = A336888(n, 2*j-1), y(n)_j = A336888(n, 2*j) and z(n) = A337215(n), for n >= 1.
EXAMPLE
The irregular triangle a(n,j) begins (z(n) = A337215(n)):
n, z(n) \ j 1 2 3 4 5 6 7 8 9 10 11 12 13 ...
-----------------------------------------------------
1, 5: 2
2, 8: 1
3, 9: 3
4, 10: 1 3
5, 13: 2 1
6, 16: 2 4 6
7, 17: 1 3 5 4
8, 18: 3
9, 20: 3 1 1 4 2 6 7
10, 25: 1 3 5 4 8 2
11, 26: 1 3 7 9 5
12, 29: 3 2 4 1 8 9 7 10
13, 32: 2 6 2 10 6
14, 34: 3 1 7 5 11
15, 36: 3 6 3 9 12 3 6 9 15
16: 37: 2 1 5 4 8 7 11 10 14 6
17, 40: 3 1 7 9 1 11 13 3 9
18, 41: 1 8 3 6 4 5 2 12 15 13 7 11 17
19, 45: 6 3 9 3 12 6 6 12 3 9
20, 49: 7 7 14 7 14
21, 50: 9 1 5 13 3 15 7
...
-----------------------------------------------------
a(6, 3) = 6 for the triangle from row n = 6 of A336888: (x(6)_5 , y(6)_6, z(6)) = (13, 13, 16), with area (in some square length units) (1/4)*sqrt(2*(16*13 + 16*13 + 13*13) - (2*13^2 +16^2)) = 6.
CROSSREFS
Cf. A334818, A336885, A336885, A336887, A336889 (row lengths), A337215 (z(n)), A337216 (areas).
Sequence in context: A083868 A128199 A345063 * A249617 A304091 A278801
KEYWORD
nonn,tabf
AUTHOR
Wolfdieter Lang, Aug 19 2020
STATUS
approved