

A337214


Primes prime(k) such that prime(k) + 2*prime(k+1), prime(k) + 2*prime(k+1) + 4*prime(k+2) and prime(k) + 2*prime(k+1) + 4*prime(k+2) + 8*prime(k+3) are all prime.


2



43, 599, 1451, 8867, 18253, 19211, 19469, 27329, 29863, 40787, 41141, 75403, 85991, 104707, 119921, 131009, 137383, 150551, 167309, 173263, 195977, 201247, 222863, 277961, 285199, 350429, 364333, 374461, 382747, 385783, 406499, 419743, 423803, 466673, 496289, 512821, 532241, 541529, 541579
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


LINKS

Chai Wah Wu, Table of n, a(n) for n = 1..10000 (n = 1..2000 from Robert Israel)


EXAMPLE

a(3)=1451 is in the sequence because 1451, 1453, 1459, 1471 are consecutive primes and 1451+2*1453=4357, 1451+2*1453+4*1459=10193, and 1451+2*1453+4*1459+8*1471=21961 are all prime.


MAPLE

N:= 60000: # to get terms in the first N primes
P:= [seq(ithprime(i), i=1..N+3)]:
P[select(i > isprime(P[i]+2*P[i+1]) and isprime(P[i]+2*P[i+1]+4*P[i+2]) and isprime(P[i]+2*P[i+1]+4*P[i+2]+8*P[i+3]) , [$1..N])];


CROSSREFS

Cf. A175914, A337213.
Sequence in context: A251896 A060888 A245427 * A332946 A229689 A146979
Adjacent sequences: A337211 A337212 A337213 * A337215 A337216 A337217


KEYWORD

nonn


AUTHOR

J. M. Bergot and Robert Israel, Aug 19 2020


STATUS

approved



