login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A337214
Primes prime(k) such that prime(k) + 2*prime(k+1), prime(k) + 2*prime(k+1) + 4*prime(k+2) and prime(k) + 2*prime(k+1) + 4*prime(k+2) + 8*prime(k+3) are all prime.
2
43, 599, 1451, 8867, 18253, 19211, 19469, 27329, 29863, 40787, 41141, 75403, 85991, 104707, 119921, 131009, 137383, 150551, 167309, 173263, 195977, 201247, 222863, 277961, 285199, 350429, 364333, 374461, 382747, 385783, 406499, 419743, 423803, 466673, 496289, 512821, 532241, 541529, 541579
OFFSET
1,1
LINKS
Chai Wah Wu, Table of n, a(n) for n = 1..10000 (n = 1..2000 from Robert Israel)
EXAMPLE
a(3)=1451 is in the sequence because 1451, 1453, 1459, 1471 are consecutive primes and 1451+2*1453=4357, 1451+2*1453+4*1459=10193, and 1451+2*1453+4*1459+8*1471=21961 are all prime.
MAPLE
N:= 60000: # to get terms in the first N primes
P:= [seq(ithprime(i), i=1..N+3)]:
P[select(i -> isprime(P[i]+2*P[i+1]) and isprime(P[i]+2*P[i+1]+4*P[i+2]) and isprime(P[i]+2*P[i+1]+4*P[i+2]+8*P[i+3]) , [$1..N])];
CROSSREFS
Sequence in context: A251896 A060888 A245427 * A332946 A229689 A146979
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Aug 19 2020
STATUS
approved