The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A337214 Primes prime(k) such that prime(k) + 2*prime(k+1), prime(k) + 2*prime(k+1) + 4*prime(k+2) and prime(k) + 2*prime(k+1) + 4*prime(k+2) + 8*prime(k+3) are all prime. 2
 43, 599, 1451, 8867, 18253, 19211, 19469, 27329, 29863, 40787, 41141, 75403, 85991, 104707, 119921, 131009, 137383, 150551, 167309, 173263, 195977, 201247, 222863, 277961, 285199, 350429, 364333, 374461, 382747, 385783, 406499, 419743, 423803, 466673, 496289, 512821, 532241, 541529, 541579 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Chai Wah Wu, Table of n, a(n) for n = 1..10000 (n = 1..2000 from Robert Israel) EXAMPLE a(3)=1451 is in the sequence because 1451, 1453, 1459, 1471 are consecutive primes and 1451+2*1453=4357, 1451+2*1453+4*1459=10193, and 1451+2*1453+4*1459+8*1471=21961 are all prime. MAPLE N:= 60000: # to get terms in the first N primes P:= [seq(ithprime(i), i=1..N+3)]: P[select(i -> isprime(P[i]+2*P[i+1]) and isprime(P[i]+2*P[i+1]+4*P[i+2]) and isprime(P[i]+2*P[i+1]+4*P[i+2]+8*P[i+3]) , [\$1..N])]; CROSSREFS Cf. A175914, A337213. Sequence in context: A251896 A060888 A245427 * A332946 A229689 A146979 Adjacent sequences: A337211 A337212 A337213 * A337215 A337216 A337217 KEYWORD nonn AUTHOR J. M. Bergot and Robert Israel, Aug 19 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 28 22:51 EST 2022. Contains 358421 sequences. (Running on oeis4.)