login
Primes prime(k) such that prime(k) + 2*prime(k+1), prime(k) + 2*prime(k+1) + 4*prime(k+2) and prime(k) + 2*prime(k+1) + 4*prime(k+2) + 8*prime(k+3) are all prime.
2

%I #14 Aug 21 2020 01:40:02

%S 43,599,1451,8867,18253,19211,19469,27329,29863,40787,41141,75403,

%T 85991,104707,119921,131009,137383,150551,167309,173263,195977,201247,

%U 222863,277961,285199,350429,364333,374461,382747,385783,406499,419743,423803,466673,496289,512821,532241,541529,541579

%N Primes prime(k) such that prime(k) + 2*prime(k+1), prime(k) + 2*prime(k+1) + 4*prime(k+2) and prime(k) + 2*prime(k+1) + 4*prime(k+2) + 8*prime(k+3) are all prime.

%H Chai Wah Wu, <a href="/A337214/b337214.txt">Table of n, a(n) for n = 1..10000</a> (n = 1..2000 from Robert Israel)

%e a(3)=1451 is in the sequence because 1451, 1453, 1459, 1471 are consecutive primes and 1451+2*1453=4357, 1451+2*1453+4*1459=10193, and 1451+2*1453+4*1459+8*1471=21961 are all prime.

%p N:= 60000: # to get terms in the first N primes

%p P:= [seq(ithprime(i), i=1..N+3)]:

%p P[select(i -> isprime(P[i]+2*P[i+1]) and isprime(P[i]+2*P[i+1]+4*P[i+2]) and isprime(P[i]+2*P[i+1]+4*P[i+2]+8*P[i+3]) , [$1..N])];

%Y Cf. A175914, A337213.

%K nonn

%O 1,1

%A _J. M. Bergot_ and _Robert Israel_, Aug 19 2020