OFFSET
0,3
COMMENTS
a(n) = Phi_14(n) where Phi_k is the k-th cyclotomic polynomial.
Number of walks of length 7 between any two distinct nodes of the complete graph K_{n+1} (n>=1). - Emeric Deutsch, Apr 01 2004
For odd n, a(n) * (n+1) / 2 also represents the first integer in a sum of n^7 consecutive integers that equals n^14. - Patrick J. McNab, Dec 26 2016
LINKS
Harry J. Smith, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
FORMULA
G.f.: (1 - 6x + 57x^2 + 232x^3 + 351x^4 + 78x^5 + 7x^6)/(1-x)^7. - Emeric Deutsch, Apr 01 2004
a(0)=1, a(1)=1, a(2)=43, a(3)=547, a(4)=3277, a(5)=13021, a(6)=39991, a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7). - Harvey P. Dale, Jul 21 2012
E.g.f.: exp(x)*(1 + 21*x^2 +70*x^3 + 56*x^4 + 14*x^5 + x^6). - Stefano Spezia, Apr 22 2023
MAPLE
A060888 := proc(n)
numtheory[cyclotomic](14, n) ;
end proc:
seq(A060888(n), n=0..20) ; # R. J. Mathar, Feb 11 2014
MATHEMATICA
Table[1-n+n^2-n^3+n^4-n^5+n^6, {n, 0, 30}] (* or *) LinearRecurrence[ {7, -21, 35, -35, 21, -7, 1}, {1, 1, 43, 547, 3277, 13021, 39991}, 30] (* or *) Cyclotomic[14, Range[0, 30]] (* Harvey P. Dale, Jul 21 2012 *)
PROG
(PARI) { for (n=0, 1000, write("b060888.txt", n, " ", n^6 - n^5 + n^4 - n^3 + n^2 - n + 1); ) } \\ Harry J. Smith, Jul 14 2009
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, May 05 2001
STATUS
approved