login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A060888
a(n) = n^6 - n^5 + n^4 - n^3 + n^2 - n + 1.
8
1, 1, 43, 547, 3277, 13021, 39991, 102943, 233017, 478297, 909091, 1623931, 2756293, 4482037, 7027567, 10678711, 15790321, 22796593, 32222107, 44693587, 60952381, 81867661, 108450343, 141867727, 183458857, 234750601, 297474451, 373584043, 465273397, 574995877
OFFSET
0,3
COMMENTS
a(n) = Phi_14(n) where Phi_k is the k-th cyclotomic polynomial.
Number of walks of length 7 between any two distinct nodes of the complete graph K_{n+1} (n>=1). - Emeric Deutsch, Apr 01 2004
For odd n, a(n) * (n+1) / 2 also represents the first integer in a sum of n^7 consecutive integers that equals n^14. - Patrick J. McNab, Dec 26 2016
FORMULA
G.f.: (1 - 6x + 57x^2 + 232x^3 + 351x^4 + 78x^5 + 7x^6)/(1-x)^7. - Emeric Deutsch, Apr 01 2004
a(0)=1, a(1)=1, a(2)=43, a(3)=547, a(4)=3277, a(5)=13021, a(6)=39991, a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7). - Harvey P. Dale, Jul 21 2012
E.g.f.: exp(x)*(1 + 21*x^2 +70*x^3 + 56*x^4 + 14*x^5 + x^6). - Stefano Spezia, Apr 22 2023
MAPLE
A060888 := proc(n)
numtheory[cyclotomic](14, n) ;
end proc:
seq(A060888(n), n=0..20) ; # R. J. Mathar, Feb 11 2014
MATHEMATICA
Table[1-n+n^2-n^3+n^4-n^5+n^6, {n, 0, 30}] (* or *) LinearRecurrence[ {7, -21, 35, -35, 21, -7, 1}, {1, 1, 43, 547, 3277, 13021, 39991}, 30] (* or *) Cyclotomic[14, Range[0, 30]] (* Harvey P. Dale, Jul 21 2012 *)
PROG
(PARI) { for (n=0, 1000, write("b060888.txt", n, " ", n^6 - n^5 + n^4 - n^3 + n^2 - n + 1); ) } \\ Harry J. Smith, Jul 14 2009
CROSSREFS
Sequence in context: A008388 A241939 A251896 * A245427 A337214 A332946
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, May 05 2001
STATUS
approved