login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A241939
Number of length 3+4 0..n arrays with no consecutive five elements summing to more than 2*n.
1
43, 509, 3150, 13339, 44063, 122162, 297324, 654345, 1329163, 2529175, 4558346, 7847619, 12991135, 20788772, 32295512, 48878145, 72279819, 104692945, 148840966, 208069499, 286447359, 388877974, 521221700, 690429545, 904688811
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = (509/5040)*n^7 + 1*n^6 + (743/180)*n^5 + (223/24)*n^4 + (8993/720)*n^3 + (245/24)*n^2 + (502/105)*n + 1.
Conjectures from Colin Barker, Oct 30 2018: (Start)
G.f.: x*(43 + 165*x + 282*x^2 - 17*x^3 + 57*x^4 - 28*x^5 + 8*x^6 - x^7) / (1 - x)^8.
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) for n>8.
(End)
EXAMPLE
Some solutions for n=4:
..1....0....1....4....0....1....2....2....0....0....2....1....1....1....4....1
..3....2....4....0....0....3....0....0....2....0....1....1....0....1....1....1
..2....0....1....0....0....0....1....3....1....0....2....0....0....1....0....0
..0....2....0....0....1....0....2....2....4....4....0....0....2....0....0....4
..1....3....2....2....1....1....0....1....0....0....2....0....2....2....0....0
..0....0....0....3....4....3....1....1....1....0....2....1....2....1....1....0
..0....1....4....3....1....0....4....1....2....1....1....4....0....1....0....3
CROSSREFS
Row 3 of A241936.
Sequence in context: A184145 A238202 A008388 * A251896 A060888 A245427
KEYWORD
nonn
AUTHOR
R. H. Hardin, May 02 2014
STATUS
approved