OFFSET
1,2
COMMENTS
Also nonnegative integers y in the solutions to 12*x^2-6*y^2+4*x+4*y+2 = 0, the corresponding values of x being A251895.
LINKS
Colin Barker, Table of n, a(n) for n = 1..653
Index entries for linear recurrences with constant coefficients, signature (1,1154,-1154,-1,1).
FORMULA
a(n) = a(n-1)+1154*a(n-2)-1154*a(n-3)-a(n-4)+a(n-5).
G.f.: -x*(3*x^4+246*x^3-676*x^2+42*x+1) / ((x-1)*(x^2-34*x+1)*(x^2+34*x+1)).
EXAMPLE
43 is in the sequence because N(43) = 5461 = 2640+2821 = N(30)+N(31).
MATHEMATICA
LinearRecurrence[{1, 1154, -1154, -1, 1}, {1, 43, 521, 49235, 600849}, 20] (* Harvey P. Dale, Aug 25 2024 *)
PROG
(PARI) Vec(-x*(3*x^4+246*x^3-676*x^2+42*x+1) / ((x-1)*(x^2-34*x+1)*(x^2+34*x+1)) + O(x^100))
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Colin Barker, Dec 10 2014
STATUS
approved