login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A060886
a(n) = n^4 - n^2 + 1.
6
1, 1, 13, 73, 241, 601, 1261, 2353, 4033, 6481, 9901, 14521, 20593, 28393, 38221, 50401, 65281, 83233, 104653, 129961, 159601, 194041, 233773, 279313, 331201, 390001, 456301, 530713, 613873, 706441, 809101, 922561, 1047553, 1184833, 1335181, 1499401
OFFSET
0,3
COMMENTS
All positive divisors of a(n) are congruent to 1, modulo 12. Proof: If p is an odd prime different from 3 then n^4 - n^2 + 1 = 0 (mod p) implies: (a) (2n^2 - 1)^2 = -3 (mod p), whence p = 1 (mod 6); and (b) (n^2 - 1)^2 = -n^2 (mod p), whence p = 1 (mod 4). - Nick Hobson, Nov 13 2006
Appears to be the number of distinct possible sums of a set of n distinct integers between 1 and n^3. Checked up to n = 4. - Dylan Hamilton, Sep 21 2010
FORMULA
a(n) = Phi_12(n), where Phi_k is the k-th cyclotomic polynomial.
G.f.: (1-4*x+18*x^2+8*x^3+x^4)/(1-x)^5. - Colin Barker, Apr 21 2012
a(n) = (n^2 - 1/2)^2 + 3/4. - Alonso del Arte, Dec 20 2015
a(n) = 5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+a(n-5), for n>4. - Vincenzo Librandi, Dec 20 2015
MAPLE
A060886 := proc(n)
numtheory[cyclotomic](12, n) ;
end proc:
seq(A060886(n), n=0..20) ; # R. J. Mathar, Feb 07 2014
MATHEMATICA
(Range[0, 29]^2 - 1/2)^2 + 3/4 (* Alonso del Arte, Dec 20 2015 *)
Table[n^4 - n^2 + 1, {n, 0, 25}] (* Vincenzo Librandi, Dec 20 2015 *)
PROG
(PARI) a(n) = n^4 - n^2 + 1; \\ Harry J. Smith, Jul 14 2009
(Magma) [n^4 - n^2 + 1: n in [0..40]]; /* or */ I:=[1, 1, 13, 73, 241]; [n le 5 select I[n] else 5*Self(n-1)-10*Self(n-2)+10*Self(n-3)-5*Self(n-4)+Self(n-5): n in [1..40]]; // Vincenzo Librandi, Dec 20 2015
CROSSREFS
Sequence in context: A084218 A175361 A125258 * A081586 A143008 A107963
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, May 05 2001
STATUS
approved