login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A060886 a(n) = n^4 - n^2 + 1. 6
1, 1, 13, 73, 241, 601, 1261, 2353, 4033, 6481, 9901, 14521, 20593, 28393, 38221, 50401, 65281, 83233, 104653, 129961, 159601, 194041, 233773, 279313, 331201, 390001, 456301, 530713, 613873, 706441, 809101, 922561, 1047553, 1184833, 1335181, 1499401 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

All positive divisors of a(n) are congruent to 1, modulo 12. Proof: If p is an odd prime different from 3 then n^4 - n^2 + 1 = 0 (mod p) implies: (a) (2n^2 - 1)^2 = -3 (mod p), whence p = 1 (mod 6); and (b) (n^2 - 1)^2 = -n^2 (mod p), whence p = 1 (mod 4). - Nick Hobson, Nov 13 2006

Appears to be the number of distinct possible sums of a set of n distinct integers between 1 and n^3. Checked up to n = 4. - Dylan Hamilton, Sep 21 2010

a(n) = Phi_12(n), where Phi_k is the k-th cyclotomic polynomial.

LINKS

Harry J. Smith, Table of n, a(n) for n = 0..1000

Index to values of cyclotomic polynomials of integer argument

Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).

FORMULA

G.f.: (1-4*x+18*x^2+8*x^3+x^4)/(1-x)^5. - Colin Barker, Apr 21 2012

a(n) = (n^2 - 1/2)^2 + 3/4. - Alonso del Arte, Dec 20 2015

a(n) = 5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+a(n-5), for n>4. - Vincenzo Librandi, Dec 20 2015

MAPLE

A060886 := proc(n)

        numtheory[cyclotomic](12, n) ;

end proc:

seq(A060886(n), n=0..20) ; # R. J. Mathar, Feb 07 2014

MATHEMATICA

(Range[0, 29]^2 - 1/2)^2 + 3/4 (* Alonso del Arte, Dec 20 2015 *)

Table[n^4 - n^2 + 1, {n, 0, 25}] (* Vincenzo Librandi, Dec 20 2015 *)

PROG

(PARI) { for (n=0, 1000, write("b060886.txt", n, " ", n^4 - n^2 + 1); ) } \\ Harry J. Smith, Jul 14 2009

(MAGMA) [n^4 - n^2 + 1: n in [0..40]]; /* or */ I:=[1, 1, 13, 73, 241]; [n le 5 select I[n] else 5*Self(n-1)-10*Self(n-2)+10*Self(n-3)-5*Self(n-4)+Self(n-5): n in [1..40]]; // Vincenzo Librandi, Dec 20 2015

CROSSREFS

Sequence in context: A084218 A175361 A125258 * A081586 A143008 A107963

Adjacent sequences:  A060883 A060884 A060885 * A060887 A060888 A060889

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, May 05 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 13 06:26 EST 2019. Contains 329968 sequences. (Running on oeis4.)