This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A060886 a(n) = n^4 - n^2 + 1. 6
 1, 1, 13, 73, 241, 601, 1261, 2353, 4033, 6481, 9901, 14521, 20593, 28393, 38221, 50401, 65281, 83233, 104653, 129961, 159601, 194041, 233773, 279313, 331201, 390001, 456301, 530713, 613873, 706441, 809101, 922561, 1047553, 1184833, 1335181, 1499401 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS All positive divisors of a(n) are congruent to 1, modulo 12. Proof: If p is an odd prime different from 3 then n^4 - n^2 + 1 = 0 (mod p) implies: (a) (2n^2 - 1)^2 = -3 (mod p), whence p = 1 (mod 6); and (b) (n^2 - 1)^2 = -n^2 (mod p), whence p = 1 (mod 4). - Nick Hobson, Nov 13 2006 Appears to be the number of distinct possible sums of a set of n distinct integers between 1 and n^3. Checked up to n = 4. - Dylan Hamilton, Sep 21 2010 a(n) = Phi_12(n), where Phi_k is the k-th cyclotomic polynomial. LINKS Harry J. Smith, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1). FORMULA G.f.: (1-4*x+18*x^2+8*x^3+x^4)/(1-x)^5. - Colin Barker, Apr 21 2012 a(n) = (n^2 - 1/2)^2 + 3/4. - Alonso del Arte, Dec 20 2015 a(n) = 5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+a(n-5), for n>4. - Vincenzo Librandi, Dec 20 2015 MAPLE A060886 := proc(n)         numtheory[cyclotomic](12, n) ; end proc: seq(A060886(n), n=0..20) ; # R. J. Mathar, Feb 07 2014 MATHEMATICA (Range[0, 29]^2 - 1/2)^2 + 3/4 (* Alonso del Arte, Dec 20 2015 *) Table[n^4 - n^2 + 1, {n, 0, 25}] (* Vincenzo Librandi, Dec 20 2015 *) PROG (PARI) { for (n=0, 1000, write("b060886.txt", n, " ", n^4 - n^2 + 1); ) } \\ Harry J. Smith, Jul 14 2009 (MAGMA) [n^4 - n^2 + 1: n in [0..40]]; /* or */ I:=[1, 1, 13, 73, 241]; [n le 5 select I[n] else 5*Self(n-1)-10*Self(n-2)+10*Self(n-3)-5*Self(n-4)+Self(n-5): n in [1..40]]; // Vincenzo Librandi, Dec 20 2015 CROSSREFS Sequence in context: A084218 A175361 A125258 * A081586 A143008 A107963 Adjacent sequences:  A060883 A060884 A060885 * A060887 A060888 A060889 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, May 05 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 13 06:26 EST 2019. Contains 329968 sequences. (Running on oeis4.)