login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = n^4 - n^2 + 1.
6

%I #42 Jul 07 2024 15:55:14

%S 1,1,13,73,241,601,1261,2353,4033,6481,9901,14521,20593,28393,38221,

%T 50401,65281,83233,104653,129961,159601,194041,233773,279313,331201,

%U 390001,456301,530713,613873,706441,809101,922561,1047553,1184833,1335181,1499401

%N a(n) = n^4 - n^2 + 1.

%C All positive divisors of a(n) are congruent to 1, modulo 12. Proof: If p is an odd prime different from 3 then n^4 - n^2 + 1 = 0 (mod p) implies: (a) (2n^2 - 1)^2 = -3 (mod p), whence p = 1 (mod 6); and (b) (n^2 - 1)^2 = -n^2 (mod p), whence p = 1 (mod 4). - Nick Hobson, Nov 13 2006

%C Appears to be the number of distinct possible sums of a set of n distinct integers between 1 and n^3. Checked up to n = 4. - _Dylan Hamilton_, Sep 21 2010

%H Harry J. Smith, <a href="/A060886/b060886.txt">Table of n, a(n) for n = 0..1000</a>

%H John Elias, <a href="/A060886/a060886.png">Illustration of initial terms: chain-linked squares</a>

%H <a href="/index/Cy#CyclotomicPolynomialsValuesAtX">Index to values of cyclotomic polynomials of integer argument</a>

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1).

%F a(n) = Phi_12(n), where Phi_k is the k-th cyclotomic polynomial.

%F G.f.: (1-4*x+18*x^2+8*x^3+x^4)/(1-x)^5. - _Colin Barker_, Apr 21 2012

%F a(n) = (n^2 - 1/2)^2 + 3/4. - _Alonso del Arte_, Dec 20 2015

%F a(n) = 5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+a(n-5), for n>4. - _Vincenzo Librandi_, Dec 20 2015

%p A060886 := proc(n)

%p numtheory[cyclotomic](12,n) ;

%p end proc:

%p seq(A060886(n),n=0..20) ; # _R. J. Mathar_, Feb 07 2014

%t (Range[0, 29]^2 - 1/2)^2 + 3/4 (* _Alonso del Arte_, Dec 20 2015 *)

%t Table[n^4 - n^2 + 1, {n, 0, 25}] (* _Vincenzo Librandi_, Dec 20 2015 *)

%o (PARI) a(n) = n^4 - n^2 + 1; \\ _Harry J. Smith_, Jul 14 2009

%o (Magma) [n^4 - n^2 + 1: n in [0..40]]; /* or */ I:=[1,1,13, 73,241]; [n le 5 select I[n] else 5*Self(n-1)-10*Self(n-2)+10*Self(n-3)-5*Self(n-4)+Self(n-5): n in [1..40]]; // _Vincenzo Librandi_, Dec 20 2015

%K nonn,easy

%O 0,3

%A _N. J. A. Sloane_, May 05 2001