login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A060883 a(n) = n^6 + n^3 + 1. 7
1, 3, 73, 757, 4161, 15751, 46873, 117993, 262657, 532171, 1001001, 1772893, 2987713, 4829007, 7532281, 11394001, 16781313, 24142483, 34018057, 47052741, 64008001, 85775383, 113390553, 148048057, 191116801, 244156251, 308933353 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

a(n) = Phi_9((n) where Phi_k is the k-th cyclotomic polynomial.

LINKS

Harry J. Smith, Table of n, a(n) for n = 0..1000

Index to values of cyclotomic polynomials of integer argument

Index entries for linear recurrences with constant coefficients, signature (7, -21, 35, -35, 21, -7, 1).

FORMULA

G.f.: (1-4*x+73*x^2+274*x^3+325*x^4+50*x^5+x^6)/(1-x)^7. [Colin Barker, Apr 21 2012]

MAPLE

A060883 := proc(n)

        numtheory[cyclotomic](9, n) ;

end proc:

seq(A060883(n), n=0..20) ; # R. J. Mathar, Feb 07 2014

MATHEMATICA

Table[n^6+n^3+1, {n, 0, 30}] (* or *) LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {1, 3, 73, 757, 4161, 15751, 46873}, 30] (* Harvey P. Dale, Jul 07 2019 *)

PROG

(PARI) a(n)={n^6 + n^3 + 1} \\ Harry J. Smith, Jul 13 2009

CROSSREFS

Sequence in context: A142078 A054689 A256144 * A162601 A173807 A093165

Adjacent sequences:  A060880 A060881 A060882 * A060884 A060885 A060886

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, May 05 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 11 12:33 EST 2019. Contains 329916 sequences. (Running on oeis4.)