Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #36 Apr 23 2023 07:26:40
%S 1,1,43,547,3277,13021,39991,102943,233017,478297,909091,1623931,
%T 2756293,4482037,7027567,10678711,15790321,22796593,32222107,44693587,
%U 60952381,81867661,108450343,141867727,183458857,234750601,297474451,373584043,465273397,574995877
%N a(n) = n^6 - n^5 + n^4 - n^3 + n^2 - n + 1.
%C a(n) = Phi_14(n) where Phi_k is the k-th cyclotomic polynomial.
%C Number of walks of length 7 between any two distinct nodes of the complete graph K_{n+1} (n>=1). - _Emeric Deutsch_, Apr 01 2004
%C For odd n, a(n) * (n+1) / 2 also represents the first integer in a sum of n^7 consecutive integers that equals n^14. - _Patrick J. McNab_, Dec 26 2016
%H Harry J. Smith, <a href="/A060888/b060888.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Cy#CyclotomicPolynomialsValuesAtX">Index to values of cyclotomic polynomials of integer argument</a>
%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (7,-21,35,-35,21,-7,1).
%F G.f.: (1 - 6x + 57x^2 + 232x^3 + 351x^4 + 78x^5 + 7x^6)/(1-x)^7. - _Emeric Deutsch_, Apr 01 2004
%F a(0)=1, a(1)=1, a(2)=43, a(3)=547, a(4)=3277, a(5)=13021, a(6)=39991, a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7). - _Harvey P. Dale_, Jul 21 2012
%F E.g.f.: exp(x)*(1 + 21*x^2 +70*x^3 + 56*x^4 + 14*x^5 + x^6). - _Stefano Spezia_, Apr 22 2023
%p A060888 := proc(n)
%p numtheory[cyclotomic](14,n) ;
%p end proc:
%p seq(A060888(n),n=0..20) ; # _R. J. Mathar_, Feb 11 2014
%t Table[1-n+n^2-n^3+n^4-n^5+n^6,{n,0,30}] (* or *) LinearRecurrence[ {7,-21,35,-35,21,-7,1},{1,1,43,547,3277,13021,39991},30] (* or *) Cyclotomic[14,Range[0,30]] (* _Harvey P. Dale_, Jul 21 2012 *)
%o (PARI) { for (n=0, 1000, write("b060888.txt", n, " ", n^6 - n^5 + n^4 - n^3 + n^2 - n + 1); ) } \\ _Harry J. Smith_, Jul 14 2009
%K nonn,easy
%O 0,3
%A _N. J. A. Sloane_, May 05 2001