

A278801


G.f.: Sum_{k>0} x^prime(k)/(1x^k).


0



0, 0, 1, 2, 1, 3, 1, 3, 2, 2, 1, 5, 1, 3, 2, 3, 2, 4, 1, 5, 2, 3, 1, 5, 2, 3, 3, 4, 1, 4, 1, 7, 3, 2, 1, 5, 2, 4, 3, 4, 1, 6, 2, 6, 2, 3, 2, 5, 1, 5, 3, 5, 2, 5, 2, 4, 3, 3, 1, 9, 1, 6, 3, 3, 2, 3, 3, 7, 3, 4, 1, 7, 1, 6, 2, 5, 3, 5, 1, 7, 4, 3, 1, 6, 1, 6, 6, 4, 1, 5, 1, 7, 3, 4, 3, 5, 2, 7, 2, 6, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,4


COMMENTS

New maxima occur at 2,3,5,11,31,59,211,331,619,1759,2341,3049,4343,12373,15431,18691,31667,66643,67651,...
4343 and 15431 are the only composites in the terms displayed above.
If we define a new maximum as greater than or equal to the previous maximum we get
1,2,3,5,7,11,19,23,31,59,131,163,167,197,211,331,467,521,547,...
This is very dense with primes and contains the previous list as a subset.


LINKS

Table of n, a(n) for n=0..100.


FORMULA

G.f.: Sum_{k>0} x^prime(k)/(1x^k).


MATHEMATICA

NN=200; MM=PrimePi[NN]+1; Table[Boole[n>2]+Sum[Boole[(n>Prime[k])&&(Mod[nPrime[k]+k1, k] == 0)], {k, 2, MM}], {n, 1, NN}]


CROSSREFS

Sequence in context: A337216 A249617 A304091 * A307720 A191350 A329616
Adjacent sequences: A278798 A278799 A278800 * A278802 A278803 A278804


KEYWORD

nonn


AUTHOR

Benedict W. J. Irwin, Nov 28 2016


STATUS

approved



