login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A336887
Irregular triangle T(n, j) giving in row n the positive integer areas of all non-right angle triangles (X(n)_j, Y(n)_j, Z(n)), with X(n)_j = sqrt(x(n)_j), Y(n)_j = sqrt(y(n)_j), and Z(n) = sqrt(z(n)), and positive integers 1 <= x(n)_j <= y(n)_j <= z(n), for j = 1, 2,..., A336886. hence z(n) = A334818(n), for n >= 1.
4
2, 1, 3, 1, 3, 4, 2, 1, 6, 2, 2, 4, 6, 1, 3, 5, 4, 3, 6, 2, 3, 1, 1, 4, 2, 6, 7, 6, 8, 3, 1, 3, 5, 4, 8, 2, 10, 1, 4, 2, 3, 7, 9, 5, 9, 3, 2, 4, 1, 8, 9, 7, 10, 3, 9, 12, 4, 2, 6, 4, 2, 10, 8, 12, 6, 2, 6, 3, 1, 7, 5, 10, 11, 8
OFFSET
1,1
COMMENTS
The length of row n is A336886(n).
A(n)_j = (1/4)*sqrt(2*(z(n)*y(n)_j + z(n)*x(n)_j + y(n)_j*x(n)_j) - ((x(n)_j)^2 + (y(n)_j)^2 + z(n)^2)), for j = 1, 2, ..., A336886(n), with x(n)_j = A336885(n, 2*j-1), y(n)_j = A336885(n, 2*j), z(n) = A334818(n), for j = 1, 2, ..., A336886(n), for n >= 1.
FORMULA
For T(n, j), n >= 1, j = 1, 2, ..., A336886(n), see also the rows n of A336885 with the pairs (x(n)_j, y(n)_j).
EXAMPLE
The irregular triangle T(n, j) begins:
n, z(n) \ j 1 2 3 4 5 6 7 8 9 10 ...
--------------------------------------------------------------------------
1, 5: 2
2, 8: 1
3, 9: 3
4, 10: 1 3 4
5, 13: 2 1
6, 15: 6
7, 16: 2 2 4 6
8, 17: 1 3 5 4
9, 18: 3 6
10, 20: 2 3 1 1 4 2 6 7 6 8
11, 24: 3
12, 25: 1 3 5 4 8 2 10
13, 26: 1 4 2 3 7 9 5
14, 27: 9
15, 29: 3 2 4 1 8 9 7 10
16, 30: 3 9 12
17, 32: 4 2 6 4 2 10 8 12 6
...
T(7, 3) = 4 because the corresponding triangle has sides (X(7)_3, Y(7)_3, Z(7)_3) = (sqrt(x(7)_3), sqrt(x(7)_3), sqrt(z(7))), with x(7)_3 = A336885(7, 2*3-1) = 5, y(7)_3 = A336885(7, 2*3) = 13, z(7) = A334818(7) = 16, with area A(7)_3 = T(7, 3) = (1/4)*sqrt(2*(16*5 + 16*13 + 5*13) - (5^2 + 13^2 + 16^2)) = 4.
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Wolfdieter Lang, Aug 10 2020
STATUS
approved