login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A336890
Numbers that eventually reach the fixed point 8208 under "x --> sum of the fourth powers of digits of x".
1
12, 17, 21, 46, 64, 71, 102, 107, 120, 137, 145, 154, 170, 173, 201, 210, 224, 242, 279, 288, 297, 317, 349, 357, 371, 375, 379, 394, 397, 406, 415, 422, 439, 451, 460, 493, 514, 537, 541, 573, 599, 604, 640, 701, 710, 713, 729, 731, 735, 739, 753, 792, 793, 828, 882, 927, 934, 937, 943, 959, 972, 973, 995
OFFSET
1,1
LINKS
EXAMPLE
12 --> 1^4+2^4 = 17 --> 1^4+7^4 = 2402 --> 2^4+4^4+0^4+2^4 = 288 --> 2^4+8^4+8^4 = 8208.
MAPLE
V:= Vector(32805): V[8208]:= true:
g:= proc(n) local L, t;
add(t^4, t = convert(n, base, 10))
end proc:
f:= proc(n) local x, S; global V;
if n <= 32805 then
if V[n] <> 0 then return V[n]
else S:= [n]
fi
else S:= []
fi;
x:= n;
do
x:= g(x);
if V[x] <> 0 then
V[S]:= V[x];
return V[x]
elif member(x, S) then
V[S]:= false;
return false
fi;
if x <= 32805 then S:= [op(S), x] fi;
od;
end proc;
select(f, [$1..10000]); # Robert Israel, Sep 03 2020
MATHEMATICA
okQ[n] := MemberQ[NestList[Total[IntegerDigits[#]^4]&, n, 30], 8208]; Select[Range[1000], okQ]
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Sergio Falcon, Aug 07 2020
STATUS
approved