|
|
A214514
|
|
Numbers of the form p^2 + q^2 + r^2, where p, q, and r are primes.
|
|
3
|
|
|
12, 17, 22, 27, 33, 38, 43, 54, 57, 59, 62, 67, 75, 78, 83, 99, 102, 107, 123, 129, 134, 139, 147, 150, 155, 171, 174, 177, 179, 182, 187, 195, 198, 203, 219, 222, 227, 243, 246, 251, 267, 291, 294, 297, 299, 302, 307, 315, 318, 323, 339, 342, 347, 363, 369
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
T. D. Noe, Table of n, a(n) for n = 1..10000
|
|
MATHEMATICA
|
nn = 10^3; ps = Prime[Range[PrimePi[Sqrt[nn]]]]; t = Flatten[Table[ps[[i]]^2 + ps[[j]]^2 + ps[[k]]^2, {i, Length[ps]}, {j, i, Length[ps]}, {k, j, Length[ps]}]]; t = Select[t, # <= nn &]; Union[t]
|
|
PROG
|
(Python)
from sympy import primerange as primes
from itertools import takewhile, combinations_with_replacement as mc
def aupto(N):
psqs = list(takewhile(lambda x: x<=N, (p**2 for p in primes(1, N+1))))
sum3 = set(sum(c) for c in mc(psqs, 3) if sum(c) <= N)
return sorted(sum3)
print(aupto(369)) # Michael S. Branicky, Dec 17 2021
|
|
CROSSREFS
|
Cf. A045636 (two primes), A214515 (four primes).
Sequence in context: A154488 A336890 A302359 * A188004 A045699 A155096
Adjacent sequences: A214511 A214512 A214513 * A214515 A214516 A214517
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
T. D. Noe, Jul 29 2012
|
|
STATUS
|
approved
|
|
|
|