OFFSET
0,2
COMMENTS
See the Comments in A094640 for why log(4/Pi) is an "alternating Euler constant."
REFERENCES
G. Boros and V. Moll, Irresistible Integrals: Symbolics, Analysis and Experiments in the Evaluation of Integrals, Cambridge University Press, Cambridge, 2004, Chap. 7.
J. Borwein and P. Borwein, Pi and the AGM, John Wiley & Sons, New York, 1987, Chap. 11.
LINKS
D. Huylebrouck, Similarities in irrationality proofs for Pi, ln2, zeta(2) and zeta(3), Amer. Math. Monthly 108 (2001) 222-231.
J. Sondow, Double Integrals for Euler's Constant and ln(4/Pi) and an Analog of Hadjicostas's Formula, Amer. Math. Monthly 112 (2005) 61-65.
J. Sondow, New Vacca-Type Rational Series for Euler's Constant and Its "Alternating" Analog ln(4/Pi), Additive Number Theory, Festschrift In Honor of the Sixtieth Birthday of Melvyn B. Nathanson (D. Chudnovsky and G. Chudnovsky, eds.), Springer, 2010, pp. 331-340.
J. Sondow and P. Hadjicostas, The generalized-Euler-constant function gamma(z) and a generalization of Somos's quadratic recurrence constant, J. Math. Anal. Appl. 332 (1) (2007), 292-314.
EXAMPLE
log(4/Pi) = 0 + 1/(4 + 1/(7 + 1/(6 + 1/(3 + 1/(1 + ...)))))
MATHEMATICA
ContinuedFraction[ Log[4/Pi], 100]
CROSSREFS
KEYWORD
cofr,easy,nonn
AUTHOR
Jonathan Sondow and Robert G. Wilson v, May 18 2004
EXTENSIONS
Offset changed by Andrew Howroyd, Aug 07 2024
STATUS
approved