login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Continued fraction for the "alternating Euler constant" log(4/Pi).
3

%I #15 Aug 07 2024 14:45:03

%S 0,4,7,6,3,1,1,9,1,1,4,26,1,2,4,1,9,1,20,3,1,12,1,2,7,1,5,2,1,5,3,1,1,

%T 1,4,1,1,57,1,2,1,8,8,1,1,1,1,1,22,1,1,6,1,6,6,1,3,1,4,2,2,2,4,1,1,2,

%U 1,19,17,348,1,1,5,16,2,2,5,1,5,2,4,2,5,1,11,1,1,11,13,2,1,1,5,2,1,2,10,1,2

%N Continued fraction for the "alternating Euler constant" log(4/Pi).

%C See the Comments in A094640 for why log(4/Pi) is an "alternating Euler constant."

%D G. Boros and V. Moll, Irresistible Integrals: Symbolics, Analysis and Experiments in the Evaluation of Integrals, Cambridge University Press, Cambridge, 2004, Chap. 7.

%D J. Borwein and P. Borwein, Pi and the AGM, John Wiley & Sons, New York, 1987, Chap. 11.

%H D. Huylebrouck, <a href="https://www.maa.org/sites/default/files/pdf/upload_library/22/Ford/Huylebrouck222-231.pdf">Similarities in irrationality proofs for Pi, ln2, zeta(2) and zeta(3)</a>, Amer. Math. Monthly 108 (2001) 222-231.

%H J. Sondow, <a href="http://arXiv.org/abs/math.CA/0211148">Double Integrals for Euler's Constant and ln(4/Pi) and an Analog of Hadjicostas's Formula</a>, Amer. Math. Monthly 112 (2005) 61-65.

%H J. Sondow, <a href="http://arXiv.org/abs/math.NT/0508042">New Vacca-Type Rational Series for Euler's Constant and Its "Alternating" Analog ln(4/Pi)</a>, Additive Number Theory, Festschrift In Honor of the Sixtieth Birthday of Melvyn B. Nathanson (D. Chudnovsky and G. Chudnovsky, eds.), Springer, 2010, pp. 331-340.

%H J. Sondow and P. Hadjicostas, <a href="http://arXiv.org/abs/math/0610499">The generalized-Euler-constant function gamma(z) and a generalization of Somos's quadratic recurrence constant</a>, J. Math. Anal. Appl. 332 (1) (2007), 292-314.

%e log(4/Pi) = 0 + 1/(4 + 1/(7 + 1/(6 + 1/(3 + 1/(1 + ...)))))

%t ContinuedFraction[ Log[4/Pi], 100]

%Y Cf. A094640 (decimal expansion of log(4/Pi)).

%K cofr,easy,nonn

%O 0,2

%A _Jonathan Sondow_ and _Robert G. Wilson v_, May 18 2004

%E Offset changed by _Andrew Howroyd_, Aug 07 2024