login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A094644
Continued fraction for e^gamma.
8
1, 1, 3, 1, 1, 3, 5, 4, 1, 1, 2, 2, 1, 7, 9, 1, 16, 1, 1, 1, 2, 6, 1, 2, 1, 6, 2, 59, 1, 1, 1, 3, 3, 3, 2, 1, 3, 5, 100, 1, 58, 1, 2, 1, 94, 1, 1, 2, 2, 10, 1, 2, 7, 1, 3, 4, 5, 3, 10, 1, 21, 1, 11, 1, 4, 1, 2, 2, 1, 2, 2, 1, 8, 3, 2, 1, 1, 6, 1, 2, 2, 1, 38, 2, 1, 4, 1, 3, 1, 1, 5, 3, 1, 52, 1, 2, 2, 1, 1
OFFSET
0,3
COMMENTS
Increasing partial quotients are: 1,3,5,7,9,16,59,100,129,314,2294,1568705
e^gamma appears in theorems of Mertens, Gronwall, Ramanujan, and Robin on primes, the sum-of-divisors function, and the Riemann Hypothesis (see Caveney-Nicolas-Sondow 2011, pp. 1-2).
REFERENCES
J. Havil, Gamma, Exploring Euler's Constant, Princeton University Press, Princeton and Oxford, 2003, page 97.
G. Boros and V. Moll, Irresistible Integrals: Symbolics, Analysis and Experiments in the Evaluation of Integrals, Cambridge University Press, Cambridge, 2004, Chap. 10.
LINKS
T. D. Noe, Table of n, a(n) for n = 0..9999 (444 terms from Bo Gyu Jeong)
G. Caveney, J.-L. Nicolas, and J. Sondow, Robin's theorem, primes, and a new elementary reformulation of the Riemann Hypothesis, Integers 11 (2011), Article A33.
Jonathan Sondow, An antisymmetric formula for Euler's constant, Math. Mag. 71 (1998), 219-220.
Jonathan Sondow, An antisymmetric formula for Euler's constant, Math. Mag. 71 (1998), 219-220.
Jonathan Sondow, Criteria for irrationality of Euler's constant, Proc. Amer. Math. Soc. 131 (2003), 3335-3344.
Jonathan Sondow, A faster product for pi and a new integral for ln pi/2, arXiv:math/0401406 [math.NT], 2004.
Jonathan Sondow, A faster product for pi and a new integral for ln pi/2, Amer. Math. Monthly 112 (2005), 729-734 and 113 (2006), 670.
Jonathan Sondow and Sergey Zlobin, A hypergeometric approach, via linear forms involving logarithms, to irrationality criteria for Euler's constant, arXiv:math/0211075 [math.NT], 2002-2009.
Jonathan Sondow and Wadim Zudilin, Euler's constant, q-logarithms and formulas of Ramanujan and Gosper, arXiv:math/0304021 [math.NT], 2003.
Jonathan Sondow and Wadim Zudilin, Euler's constant, q-logarithms and formulas of Ramanujan and Gosper, Ramanujan J. 12 (2006), 225-244.
EXAMPLE
1 + 1/(1 + 1/(3 + 1/(1 + 1/(1 + 1/(3 + 1/(5 + 1/(4 + ...)))))))
MATHEMATICA
ContinuedFraction[ Exp[ EulerGamma], 100]
PROG
(PARI) contfrac(exp(Euler)) \\ Amiram Eldar, Jun 13 2021
CROSSREFS
Cf. A073004 = decimal expansion of exp(gamma).
Gamma is the Euler-Mascheroni constant A001620.
Cf. A079650 = continued fraction for exp(-gamma). [From R. J. Mathar, Sep 05 2008]
Sequence in context: A285175 A016599 A079650 * A113046 A245541 A209563
KEYWORD
nonn,cofr,easy
AUTHOR
EXTENSIONS
Offset changed by Andrew Howroyd, Aug 07 2024
STATUS
approved