OFFSET
1,3
COMMENTS
See A245196 for a list of other sequences produced by this type of recurrence.
It follows from the definition that the final entries in the blocks are triangular numbers.
EXAMPLE
Arranged into blocks:
1,
1, 3,
1, 1, 3, 6,
1, 1, 1, 3, 3, 3, 6, 10,
1, 1, 1, 3, 1, 1, 3, 6, 3, 3, 3, 9, 6, 6, 10, 15,
1, 1, 1, 3, 1, 1, 3, 6, 1, 1, 1, 3, 3, 3, 6, 10, 3, 3, 3, 9, 3, 3, 9, 18, 6, 6, 6, 18, 10, 10, 15, 21,
...
MAPLE
G:=[seq(n, n=0..30)];
m:=1;
f:=proc(n) option remember; global m, G; local k, r, j, np;
k:=1+floor(log[2](n)); np:=2^k-n;
if np=1 then r:=0; j:=0; else r:=1+floor(log[2](np-1)); j:=2^r-np; fi;
if j=0 then G[k-r]; else m*G[k-r]*f(j); fi;
end;
[seq(f(n), n=1..120)];
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
N. J. A. Sloane, Jul 26 2014
STATUS
approved