login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A308624
Triangle read by rows: T(n,k) = n!/((n mod k)!*(k-(n mod k))!*(ceiling(n/k)!^(n mod k))*(floor(n/k)!^(k-(n mod k)))), n >= 1, n >= k >= 1, the number of ways of dividing n labeled items into k unlabeled boxes as evenly as possible.
1
1, 1, 1, 1, 3, 1, 1, 3, 6, 1, 1, 10, 15, 10, 1, 1, 10, 15, 45, 15, 1, 1, 35, 105, 105, 105, 21, 1, 1, 35, 280, 105, 420, 210, 28, 1, 1, 126, 280, 1260, 945, 1260, 378, 36, 1, 1, 126, 2100, 6300, 945, 4725, 3150, 630, 45, 1, 1, 462, 5775, 15400, 17325, 10395, 17325, 6930, 990, 55, 1
OFFSET
1,5
COMMENTS
This is the generalized form of A060540 that allows for a number of groups that does not evenly divide the number of items.
LINKS
Michael De Vlieger, Table of n, a(n) for n = 1..11325 (rows 1 <= n <= 150, flattened)
Johan Kok, Degree affinity number of certain 2-regular graphs, Open J. of Disc. Appl. Math. (2020) Vol. 3, No. 3, 77-84.
Johan Kok and Joseph Varghese Kureethara, Stirling number of the fourth kind and lucky partitions of a finite set, Communications in Combinatorics and Optimization (2021) Vol. 6, Issue 2, 211-219.
FORMULA
T(n,k) = n!/((n mod k)!*(k-(n mod k))!*ceiling(n/k)!^(n mod k)*floor(n/k)!^(k-(n mod k))).
T(n,k) = n!/(A!*B!*ceiling(n/k)!^A*floor(n/k)!^B) where A = n mod k and B = k - (n mod k).
EXAMPLE
Example terms in T(5,2) = 10:
(1,2,3) (4,5)
(1,2,4) (3,5)
(1,2,5) (3,4)
(1,3,4) (2,5)
(1,3,5) (2,4)
(1,4,5) (2,3)
(1,2) (3,4,5)
(1,3) (2,4,5)
(1,4) (3,4,5)
(1,5) (2,3,4)
Triangle begins:
1;
1, 1;
1, 3, 1;
1, 3, 6, 1;
1, 10, 15, 10, 1;
1, 10, 15, 45, 15, 1;
1, 35, 105, 105, 105, 21, 1;
1, 35, 280, 105, 420, 210, 28, 1;
1, 126, 280, 1260, 945, 1260, 378, 36, 1;
1, 126, 2100, 6300, 945, 4725, 3150, 630, 45, 1;
1, 462, 5775, 15400, 17325, 10395, 17325, 6930, 990, 55, 1;
MATHEMATICA
Flatten[Table[n!/(Mod[n, k]!*(k - Mod[n, k])!*Ceiling[n/k]!^Mod[n, k]* Floor[n/k]!^(k - Mod[n, k])), {n, 1, 10}, {k, 1, n}]]
PROG
(PARI) T(n, k) = my(A = n % k, B = k - (A)); n!/(A!*B!*ceil(n/k)!^A*floor(n/k)!^B);
tabl(nn) = for (n=1, nn, for (k=1, n, print1(T(n, k), ", ")); print); \\ Michel Marcus, Jun 28 2019
CROSSREFS
Cf. A060540.
Sequence in context: A113046 A245541 A209563 * A133825 A365968 A156710
KEYWORD
nonn,tabl
AUTHOR
Dillon Lareau, Jun 11 2019
STATUS
approved