The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A094643 Continued fraction for log Pi/2. 1
 0, 2, 4, 1, 1, 1, 33, 1, 4, 2, 1, 2, 1, 17, 1, 1, 4, 4, 1, 2, 1, 3, 1, 3, 1, 17, 54, 1, 4, 1, 3, 38, 1, 2, 1, 1, 2, 3, 4, 3, 1, 4, 1, 8, 4, 2, 1, 4, 12, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 16, 3, 2, 4, 1, 5, 1, 12, 1, 2, 14, 1, 1, 1, 2, 3, 2, 16, 3, 4, 4, 1, 1, 10, 198, 2, 6, 2, 1, 2, 3, 1, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 REFERENCES G. Boros and V. Moll, Irresistible Integrals: Symbolics, Analysis and Experiments in the Evaluation of Integrals, Cambridge University Press, Cambridge, 2004, Chap. 7. J. Borwein and P. Borwein, Pi and the AGM, John Wiley & Sons, New York, 1987, Chap. 11. LINKS Table of n, a(n) for n=1..98. D. Huylebrouck, Similarities in irrationality proofs for Pi, ln2, zeta(2) and zeta(3), Amer. Math. Monthly 108 (2001) 222-231. J. Sondow, A faster product for pi and a new integral for ln(pi/2), Amer. Math. Monthly 112 (2005), 729-734 and 113 (2006), 670. MATHEMATICA ContinuedFraction[ Log[Pi/2], 100] CROSSREFS Cf. A094642. Sequence in context: A247645 A177196 A010741 * A094593 A327814 A188348 Adjacent sequences: A094640 A094641 A094642 * A094644 A094645 A094646 KEYWORD cofr,easy,nonn AUTHOR Jonathan Sondow and Robert G. Wilson v, May 18 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 12 09:28 EDT 2024. Contains 371627 sequences. (Running on oeis4.)