login
A010741
Shifts 3 places left under inverse binomial transform.
7
1, 2, 4, 1, 1, 1, -6, 14, -25, 32, 6, -250, 1222, -4380, 13059, -31705, 48464, 76354, -1159911, 7041015, -33400183, 135931668, -473704510, 1277600695, -1233828142, -16196871172, 169736941512, -1156974034428, 6577630531262, -32839667759307, 142900400342885
OFFSET
0,2
LINKS
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210; arXiv:math/0205301 [math.CO], 2002.
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
N. J. A. Sloane, Transforms
FORMULA
G.f. A(x) satisfies: A(x) = 1 + 2*x + 4*x^2 + x^3*A(x/(1 + x))/(1 + x). - Ilya Gutkovskiy, Feb 02 2022
MAPLE
a:= proc(n) option remember; (m-> `if`(m<0, 2^n,
add(a(m-j)*binomial(m, j)*(-1)^j, j=0..m)))(n-3)
end:
seq(a(n), n=0..35); # Alois P. Heinz, Feb 02 2022
MATHEMATICA
a[n_] := a[n] = With[{m = n - 3}, If[m < 0, 2^n,
Sum[a[m - j]*Binomial[m, j]*(-1)^j, {j, 0, m}]]];
Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Mar 02 2022, after Alois P. Heinz *)
CROSSREFS
KEYWORD
sign
STATUS
approved