login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A010745
Shifts 5 places left under inverse binomial transform.
5
1, 2, 4, 8, 16, 1, 1, 1, 1, 1, -30, 124, -336, 734, -1401, 2404, -3485, 2212, 14630, -105408, 497131, -1995782, 7265342, -24576128, 77966104, -231218343, 626012198, -1430352680, 1894959964, 6114950887, -73791743479, 472896657475, -2523776826105, 12272646042530
OFFSET
0,2
LINKS
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
N. J. A. Sloane, Transforms
FORMULA
G.f. A(x) satisfies: A(x) = 1 + 2*x + 4*x^2 + 8*x^3 + 16*x^4 + x^5*A(x/(1 + x))/(1 + x). - Ilya Gutkovskiy, Feb 02 2022
MAPLE
a:= proc(n) option remember; (m-> `if`(m<0, 2^n,
add(a(m-j)*binomial(m, j)*(-1)^j, j=0..m)))(n-5)
end:
seq(a(n), n=0..35); # Alois P. Heinz, Feb 02 2022
MATHEMATICA
a[n_] := a[n] = Function[m, If[m < 0, 2^n, Sum[a[m-j]*Binomial[m, j]*(-1)^j, {j, 0, m}]]][n-5]; Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Jan 13 2025, after Alois P. Heinz *)
CROSSREFS
KEYWORD
sign,changed
STATUS
approved