login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A010748
Shifts 4 places right under inverse binomial transform.
3
1, 1, 1, 1, 2, 7, 23, 65, 165, 398, 976, 2618, 7997, 27205, 97705, 355631, 1289746, 4662069, 16971775, 63150385, 243513801, 980670052, 4121324752, 17941655332, 80143362633, 364476958473, 1680382664145, 7847729640629, 37192941056498, 179431901258459
OFFSET
0,5
LINKS
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
N. J. A. Sloane, Transforms
MAPLE
T:= proc(n, k) option remember; local j; if n<k then if n=0 then 1 else 0 fi else add(binomial(n-k, j) *T(j, k), j=0..n-k) fi end: a:= n-> T(n+4, 4): seq(a(n), n=0..30); # Alois P. Heinz, Sep 05 2008
MATHEMATICA
T[n_, k_] := T[n, k] = If[n<k, If[n==0, 1, 0], Sum[Binomial[n-k, j] *T[j, k], {j, 0, n-k}]]; a[n_] := T[n+4, 4]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 30 2015, after Alois P. Heinz *)
CROSSREFS
Column k=4 of A143983 (using a different offset).
Sequence in context: A281584 A230315 A228629 * A272819 A185250 A048496
KEYWORD
nonn,eigen
STATUS
approved