login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A228629
Members p of a pair of primes (p,q) such that the decimal digits of q are the 9's complement of the decimal digits of p.
3
2, 7, 23, 61, 67, 83, 107, 109, 127, 163, 167, 181, 211, 223, 227, 239, 241, 251, 263, 269, 271, 277, 283, 293, 307, 367, 383, 389, 401, 409, 421, 461, 463, 467, 487, 509, 521, 523, 563, 587, 601, 607, 613, 617, 631, 641, 643, 647, 653, 661, 673, 677, 683, 701
OFFSET
1,1
COMMENTS
We consider length(p) = length(q). For example, the primes p = 97, 997, 99999999999999997,...(see A003618) are not in the sequence with q = 2.
Each prime p appears only once in the sequence, but the pair (p, q) is not unique, for example the prime 163 generates two pairs of primes(163, 683) and (163, 863), the prime 283 generates three pairs of primes(283, 167), (283, 617) and (283, 761).
The couples of primes (p, q) are (2, 7), (7, 2), (23, 67), (61, 83), (67, 23), (83, 61), (107, 829), (109, 809), (127, 827),...
In the general case, the digits of p are different from q, but there exists numbers p such that q has the same digits as p, for example (p, q) = (227, 277), (727, 227), (881, 181), ...
LINKS
EXAMPLE
23 is in the sequence because 9-2 = 7 and 9 - 3 = 6 => 67 is prime, and we obtain the pair (23, 67).
MAPLE
with(numtheory):kk:=0:
for n from 1 to 200 do:
ii:=0:
for k from 1 to 2000 while(ii=0) do:
p1:=ithprime(n):p2:=ithprime(k):
x1:=convert(p1, base, 10):n1:=nops(x1):
x2:=convert(p2, base, 10):n2:=nops(x2):
if n1=n2 then
W:=array(1..n1):U:=array(1..n1):U1:=array(1..n1):
for c from 1 to n1 do:
U1[c]:=x1[c]:od:U:=sort(x1, `<`):V:=sort(x2, `>`):
for j from 1 to n1 do:
W[j]:= 9-V[j]:od:W1:=sort(W, `>`):jj:=0:
for b from 1 to n1 do:
if U[b]=W1[b] then
jj:=jj+1:
else fi:
od:
if jj=n1 then
ii:=1: kk:=kk+1: printf(`%d, `, p1):
else
fi:
fi:
od:
od:
# Alternative:
R:= 2, 7:
for d from 2 to 3 do
P:= select(isprime, [seq(i, i=10^(d-1)+1..10^d-1, 2)]);
nP:= nops(P);
Pd:= map(sort@convert, P, base, 10);
Ps:= convert(map(t -> ListTools:-Reverse([9$d]-t), Pd), set);
S:= select(t -> member(Pd[t], Ps), [$1..nP]);
R:= R, op(P[S]);
od:
R; # Robert Israel, Oct 06 2020
CROSSREFS
Cf. A228628.
Sequence in context: A034546 A281584 A230315 * A010748 A272819 A185250
KEYWORD
nonn,base
AUTHOR
Michel Lagneau, Aug 28 2013
STATUS
approved