The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A228628 9's complement of prime(n). 3
7, 6, 4, 2, 88, 86, 82, 80, 76, 70, 68, 62, 58, 56, 52, 46, 40, 38, 32, 28, 26, 20, 16, 10, 2, 898, 896, 892, 890, 886, 872, 868, 862, 860, 850, 848, 842, 836, 832, 826, 820, 818, 808, 806, 802, 800, 788, 776, 772, 770, 766, 760, 758, 748, 742, 736, 730, 728 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
a(n) = 10^k - 1 - prime(n) where k is the number of digits in prime(n). If d is d digit in prime(n) replace it with 9 - d.
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
FORMULA
a(n) = A061601(A000040(n)). - Charles R Greathouse IV, Aug 29 2013
a(n) = A160668(n) - 1. Alois P. Heinz, Dec 08 2017
EXAMPLE
a(6) = 86 because prime(6) = 13 and 9 - 1 = 8, 9 - 6 = 3.
MAPLE
a:= n-> (p-> 10^length(p)-p-1)(ithprime(n)):
seq(a(n), n=1..100); # Alois P. Heinz, Dec 08 2017
MATHEMATICA
nineComplement[n_] := FromDigits[Table[9, {Length[IntegerDigits[Prime[n]]]}] - IntegerDigits[Prime[n]]]; Table[nineComplement[n], {n, 1, 71}]
PROG
(PARI) a(n)=my(p=prime(n)); 10^#Str(p)-p-1 \\ Charles R Greathouse IV, Aug 29 2013
(Python)
from sympy import primerange
def nc(n): return 10**len(str(n)) - 1 - n
def auptop(limit): return [nc(p) for p in primerange(1, limit+1)]
print(auptop(271)) # Michael S. Branicky, Jul 06 2021
CROSSREFS
Sequence in context: A021933 A154730 A242967 * A131266 A258094 A258008
KEYWORD
nonn,base,easy
AUTHOR
Michel Lagneau, Aug 28 2013
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 30 03:30 EDT 2024. Contains 372957 sequences. (Running on oeis4.)