login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A200021 Decimal expansion of greatest x satisfying x^2 - 2*cos(x) = 2*sin(x). 3
1, 4, 7, 6, 3, 6, 8, 7, 4, 8, 3, 8, 0, 9, 2, 0, 3, 9, 1, 6, 7, 1, 6, 9, 6, 8, 8, 9, 7, 8, 9, 8, 3, 6, 4, 1, 6, 4, 3, 6, 9, 3, 2, 3, 2, 3, 1, 9, 7, 3, 2, 4, 9, 9, 3, 0, 3, 6, 9, 4, 0, 4, 4, 5, 3, 9, 6, 6, 8, 4, 3, 0, 8, 6, 1, 5, 8, 0, 7, 6, 0, 1, 2, 4, 0, 6, 0, 1, 7, 3, 0, 4, 8, 3, 3, 6, 9, 6, 2 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

See A199949 for a guide to related sequences.  The Mathematica program includes a graph.

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..10000

EXAMPLE

least x:  -0.64004919114257711573983526967584120...

greatest x: 1.4763687483809203916716968897898364...

MATHEMATICA

a = 1; b = -2; c = 2;

f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]

Plot[{f[x], g[x]}, {x, -1, 2}, {AxesOrigin -> {0, 0}}]

r = x /. FindRoot[f[x] == g[x], {x, -.65, -.64}, WorkingPrecision -> 110]

RealDigits[r]  (* A200020 *)

r = x /. FindRoot[f[x] == g[x], {x, 1.47, 1.48}, WorkingPrecision -> 110]

RealDigits[r]  (* A200021 *)

PROG

(PARI) a=1; b=-2; c=2; solve(x=1, 2, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 24 2018

CROSSREFS

Cf. A199949.

Sequence in context: A021025 A078974 A094641 * A112518 A228715 A308366

Adjacent sequences:  A200018 A200019 A200020 * A200022 A200023 A200024

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Nov 12 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 15 04:33 EDT 2019. Contains 328026 sequences. (Running on oeis4.)